Solveeit Logo

Question

Question: Let f : R → R is a real valued function ∀ x, y ∈ R such that \| f(x) – f(y)\| ≤ \|x – y\|<sup>2</sup...

Let f : R → R is a real valued function ∀ x, y ∈ R such that | f(x) – f(y)| ≤ |x – y|2 . The function h(x) = log2\log 2dx is –

A

Every where continuous

B

Discontinuous at x = 0 only

C

Discontinuous at all integral points

D

h(0) = 0

Answer

Every where continuous

Explanation

Solution

Since |f(x) – f(y)| ≤ | x – y |2 x ≠ y

f(x)f(y)xy\left| \frac { f ( x ) - f ( y ) } { x - y } \right| ≤ | x – y |

Taking lim as y → x, we get

limyx\lim _ { y \rightarrow x } f(x)f(y)xy\left| \frac { f ( x ) - f ( y ) } { x - y } \right|limyx\lim _ { y \rightarrow x } |x – y|

limyxf(x)f(y)xy\left| \lim _ { y \rightarrow x } \frac { f ( x ) - f ( y ) } { x - y } \right|limyx(xy)\left| \lim _ { y \rightarrow x } ( x - y ) \right|

⇒ |f ′ (x) ≤ 0| ⇒ |f ′(x)| = 0 (Q |f′(x) ≥ 0|)

∴ f ′(x) = 0 ⇒ f(x) = C (constant)

∴ h(x) = dx =Cdx\int \mathrm { Cdx }= cx + d  where d is constant of integration.

h(x) of a linear function of x which is continuous for all x ∈ R.