Solveeit Logo

Question

Question: Let f : R → R be such that f(1) = 3 and f’(1) = 6. Then \(\lim_{x \rightarrow 0}\left( \frac{f(1 + x...

Let f : R → R be such that f(1) = 3 and f’(1) = 6. Then limx0(f(1+x)f(1))1/x\lim_{x \rightarrow 0}\left( \frac{f(1 + x)}{f(1)} \right)^{1/x} . Equals

A

1

B

e1/2

C

e2

D

e3

Answer

e2

Explanation

Solution

Given that f; R → R s.t.

F(1) = 3 and f’(1) = 6

Then limx0[f(1+x)f(1)]1/x\lim_{x \rightarrow 0}\left\lbrack \frac{f(1 + x)}{f(1)} \right\rbrack^{1/x}= limex01x[logf(1+x)logf(1)]\lim_{e^{x \rightarrow 0}}\frac{1}{x}\left\lbrack \log f(1 + x) - \log f(1) \right\rbrack

= limex01f(1+x)f(1+x)1\lim_{e^{x \rightarrow 0}}\frac{\frac{1}{f(1 + x)}f'(1 + x)}{1} [Using L’ Hospital rule]

= ef(1)f(1)=e6/3=e2e^{\frac{f'(1)}{f(1)}} = e^{6/3} = e^{2}.