Question
Question: Let f : R → R be such that f(1) = 3 and f’(1) = 6. Then \(\lim_{x \rightarrow 0}\left( \frac{f(1 + x...
Let f : R → R be such that f(1) = 3 and f’(1) = 6. Then limx→0(f(1)f(1+x))1/x . Equals
A
1
B
e1/2
C
e2
D
e3
Answer
e2
Explanation
Solution
Given that f; R → R s.t.
F(1) = 3 and f’(1) = 6
Then limx→0[f(1)f(1+x)]1/x= limex→0x1[logf(1+x)−logf(1)]
= limex→01f(1+x)1f′(1+x) [Using L’ Hospital rule]
= ef(1)f′(1)=e6/3=e2.