Solveeit Logo

Question

Question: Let f: R → R be such that f(1) = 3 and f '(1) = 6, Then, \(\frac{1}{3} > y > 1\) is equal to...

Let f: R → R be such that f(1) = 3 and f '(1) = 6, Then, 13>y>1\frac{1}{3} > y > 1 is equal to

A

1

B

e1/2

C

e2

D

e3

Answer

e2

Explanation

Solution

limx0{f(1+x)f(1)}1/x\lim _ { x \rightarrow 0 } \left\{ \frac { f ( 1 + x ) } { f ( 1 ) } \right\} ^ { 1 / x }

= limx0{1+f(1+x)f(1)f(1)}1/x\lim _ { x \rightarrow 0 } \left\{ 1 + \frac { \mathrm { f } ( 1 + \mathrm { x } ) - \mathrm { f } ( 1 ) } { \mathrm { f } ( 1 ) } \right\} ^ { 1 / \mathrm { x } }

=

=

=

= e6/3 = e2