Question
Mathematics Question on Relations and Functions
Let f:R→R be defined by f(x)={x if x≤1−x+2 if x>1}.Then ∫02f(x)dx=?
A
=2(tan−1e−4π)
B
=(tan−1e+2π)
C
=4(tan−1e+4π)
D
=(tan−1e−2π)
E
=(tan−1e−4π)
Answer
=2(tan−1e−4π)
Explanation
Solution
Given that:
∫011+e2x2exdx
Take, u=ex
$du=e^xdx$
Then corresponding limits will be 1,e
∴ 2∫011+t2tdx
=2[tan−1t]1e
=2(tan−1e−tan−1(1))
=2(tan−1e−4π) (_Ans)