Solveeit Logo

Question

Mathematics Question on Relations and functions

Let ƒ:RRƒ : R→R be defined as ƒ(x)=x3+x5ƒ(x) = x^3 + x – 5 . If g(x) is a function such that ƒ(g(x))=xƒ(g(x)) = x, ∀‘x‘∈R. Then g(63)g^′(63) is equal to_____.

A

149\frac {1}{49}

B

349\frac {3}{49}

C

4349\frac {43}{49}

D

9149\frac {91}{49}

Answer

149\frac {1}{49}

Explanation

Solution

ƒ(x)=3x2\+1ƒ(x) = 3x^2 \+ 1
ƒ(x)ƒ^′(x) is bijective function
and ƒ(g(x))=xg(xƒ(g(x)) = x⇒g(x) is inverse of ƒ(x)ƒ(x)
g(ƒ(x))=xg(ƒ(x)) = x
g(f(x)).f(x)=1g^′(f(x)).f^′(x) = 1
g(f(x))=13x2+1g^′(f(x)) = \frac {1}{3x^2+1}
Put x=4x = 4 we get
g(63)=149g^′(63)=\frac {1}{49}

So, the correct option is (A): 149\frac {1}{49}