Solveeit Logo

Question

Mathematics Question on composite of functions

Let
ƒ : R → R
be defined as f ( x) = x -1 and
g : R - { 1, -1 } → R
be defined as
g(x) = x2x21\frac{x²}{x² - 1}
Then the function fog is :

A

One-one but not onto

B

Onto but not one-one

C

Both one-one and onto

D

Neither one-one nor onto

Answer

Neither one-one nor onto

Explanation

Solution

The correct answer is (D) : Neither one-one nor onto
ƒ : R → R
be defined as
f(x) = x -1 and g : R - { 1, -1 } → R
be defined as
g(x) =x2x21\frac{ x²}{x² - 1}
Now fog(x)
=x2x21\frac{ x²}{x² - 1} - 1 = 1x21\frac{1}{x² - 1}
∴ Domain of fog(x) = R - { -1, 1 }
And range of fog(x) = ( - ∞ , -1 ] ∪ (0, ∞)
Now ,
ddx\frac{d}{dx}_ _ (ƒog(x))(ƒog(x)) = 1(x21)2\frac{-1}{( x² - 1 )²} . 2x =2x(1x2)2\frac{ 2x}{( 1 - x² )²}
ddx\frac{d}{dx}_ _ (ƒog(x))(ƒog(x)) > 0 for 2x((1x)(1+x))2\frac{2x}{(( 1 - x )(1 + x))²} > 0
x((x1)(x+1))2\frac{x}{(( x - 1)( x + 1))²} < 0
∴ x ∈ ( - ∞, 0 )
and
ddx(ƒog(x))\frac{d}{dx} (ƒog(x)) < 0 for x ∈ ( 0, ∞ )
∴ fog(x) is neither one-one nor onto