Solveeit Logo

Question

Mathematics Question on Relations and Functions

Let f :RR be defined as f(x)=10x+7.f(x)=10x+7. Find the function g : f →R such that gof=f o g=1R.

Answer

It is given that f: R → R is defined as f(x) = 10x + 7.
One-one: Let f(x) = f(y), where x, y ∈R.
⇒ 10x + 7 = 10y + 7
⇒ x = y
∴ f is a one-one function.
Onto: For y ∈ R, let y = 10x + 7.
=>x=y-710\frac{7}{10}∈R
Therefore, for any y ∈ R, there exists x=y-710\frac{7}{10}
such that f(x)=f(x=y710)=10(x=y710)+7=y7+7=yf(x)=f(x=\frac{y-7}{10})=10(x=\frac{y-7}{10})+7=y-7+7=y
∴ f is onto.
Therefore, f is one-one and onto.
Thus, f is an invertible function.
Let us define g: R → R as g(y)=y710g(y)=y-\frac{7}{10}
Now, we have:
gof(x)=g(f(x))=g(10x+7)=(10x+7)710=10x10=xgof(x)=g(f(x))=g(10x+7)=(10x+7)-\frac{7}{10}=\frac{10x}{10}=x

And, fog(y)=f(g(y))=f(y710)=10(y710)+7=y7+7=yfog(y)=f(g(y))=f(y-\frac{7}{10})=10(y-\frac{7}{10})+7=y-7+7=y
Therefore gof=Irandgof=IRgof=I_rand\,gof=I_R
Hence, the required function g: R → R is defined as g(y)=y710g(y)=y-\frac{7}{10}