Question
Question: Let f : R ® R be a function satisfying f(x + y) = f(x) + lxy + 3x<sup>2</sup>y<sup>2</sup> for all ...
Let f : R ® R be a function satisfying
f(x + y) = f(x) + lxy + 3x2y2 for all x, y Î R. If f(3) = 4 and f(5) = 52 then f ' (x) is equal to –
A
10x
B
– 10x
C
20x
D
128x
Answer
– 10x
Explanation
Solution
Put x = x, y = h
f(x + h) – f(x) = lxh + 3x2h2
limh→0 hf(x+h)−f(x) = lx
̃ f '(x) = lx
x = 3, y = 2
f(5) = f(3) + l(6) + 3(3)2 (2)2
48 = 6l + 108 ̃ l = – 10
f '(x) = – 10x