Question
Question: Let f : R → R be a function defined by f(x) = max {x, x<sup>3</sup>}. The set of all points where f(...
Let f : R → R be a function defined by f(x) = max {x, x3}. The set of all points where f(x) is NOT differentiable is
A
{−1, 1}
B
{−1, 0}
C
{0, 1}
D
{−1, 0, 1}
Answer
{−1, 0, 1}
Explanation
Solution
f(x) = max. {x , x3}
= $\left{ \begin{matrix} \begin{matrix} x; \ x^{3}; \end{matrix} \ x; \ x^{3} \end{matrix} \right.\ \begin{matrix} \begin{matrix} x < - 1 \
- 1 \leq x \leq 0 \end{matrix} \ 0 < x < 1 \ x \geq 1 \end{matrix}$
∴ f’(x) = $\left{ \begin{matrix} \begin{matrix} 1; \ 3x^{2}; \end{matrix} \ 1; \ 3x^{2} \end{matrix} \right.\ \begin{matrix} \begin{matrix} x < - 1 \
- 1 \leq x \leq 0 \end{matrix} \ 0 < x < 1 \ x \geq 1 \end{matrix}$ Clearly f is not differentiable at -1, 0 and 1.
∴ ‘D’ is the correct alternative.