Solveeit Logo

Question

Mathematics Question on Differential equations

Let ƒ :RR be a function defined by
f(x)=2e2xe2x+exf(x) = \frac{2e^{2x}}{e^{2x} + e^x}
Then f(1100)+f(2100)+f(3100)++f(99100)f\left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + \ldots + f\left(\frac{99}{100}\right)
is equal to ________.

Answer

The correct answer is 99
f(x)=2e2xe2x+exf(x) = \frac{2e^{2x}}{e^{2x} + e^x} and f(1x)=2e22xe22x+e1xf(1-x) = \frac{2e^{2-2x}}{e^{2-2x} + e^{1-x}}
∴$$ \frac{f(x)+f(1-x)}{2} = 1
i.e. f(x)+f(1-x) = 2
Therefore,
f(1100)+f(2100)+...+f(99100)f(\frac{1}{100}) + f(\frac{2}{100})+...+f(\frac{99}{100})
= x=149f(x100)+f(1x100100)+f(12)\sum_{x=1}^{49} f\left(\frac{x}{100}\right) + f\left(\frac{1 - \frac{x}{100}}{100}\right) + f\left(\frac{1}{2}\right)
=49×2+1=99= 49 \times 2+1 = 99