Question
Mathematics Question on limits and derivatives
Let f : R → R be a differentiable function such that
f(4π)=2,f(2π)=0 and f′(2π)=1
and let
g(x)=∫x4π(f′(t)sec(t)+tan(t)sec(t)f(t))dt
forx∈(4π,2π) Then limx→2π−g(x)is equal to
A
2
B
3
C
4
D
-3
Answer
3
Explanation
Solution
The correct answer is (B) : 3
Given :
f(4π)=2,f(2π)=0
and
f′(2π)=1
g(x)=∫x4π(f′(t)sec(t)+tan(t)tan(t)sec(t)f(t))dt
=[sec(t)+f(t)]x4π=2−sec(x)⋅f(x)
Now,
limx→2π−g(x)=limh→0g(2π−h)=limh→0[2−cosec(h))⋅f(2π−h)]
limh→0[2−sin(h)f(2π−h)]=limh→0[2+cos(h)f′(2π−h)]=3