Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let f : R → R be a differentiable function such that
f(π4)=2,f(π2)=0f(\frac{π}{4})=\sqrt2,f(\frac{π}{2})=0 and f(π2)=1f′(\frac{π}{2})=1
and let
g(x)=xπ4(f(t)sec(t)+tan(t)sec(t)f(t))dtg(x) = \int_{x}^{\frac{\pi}{4}} \left(f'(t)\sec(t) + \tan(t)\sec(t)f(t)\right) \, dt
forx(π4,π2) x∈(\frac{π}{4},\frac{π}{2}) Then limxπ2g(x)\lim_{{x \to \frac{\pi}{2}^-}} g(x)is equal to

A

2

B

3

C

4

D

-3

Answer

3

Explanation

Solution

The correct answer is (B) : 3
Given :
f(π4)=2,f(π2)=0f(\frac{π}{4})=\sqrt2,f(\frac{π}{2})=0
and
f(π2)=1f′(\frac{π}{2})=1
g(x)=xπ4(f(t)sec(t)+tan(t)tan(t)sec(t)f(t))dtg(x) = \int_{x}^{\frac{\pi}{4}} \left(f'(t) \sec(t) + \tan(t) \tan(t) \sec(t) f(t)\right) \, dt
=[sec(t)+f(t)]xπ4=2sec(x)f(x)[\sec(t) + f(t)]_{x}^{\frac{\pi}{4}} = 2 - \sec(x) \cdot f(x)
Now,
limxπ2g(x)=limh0g(π2h)=limh0[2cosec(h))f(π2h)]\lim_{{x \to \frac{\pi}{2}^-}}g(x) = \lim_{{h \to 0}} g\left(\frac{\pi}{2} - h\right) = \lim_{{h \to 0}} \left[2 -cosec(h)) \cdot f\left(\frac{\pi}{2} - h\right)\right]
limh0[2f(π2h)sin(h)]=limh0[2+f(π2h)cos(h)]=3\lim_{{h \to 0}} \left[2 - \frac{f\left(\frac{\pi}{2} - h\right)} {\sin(h)}\right] = \lim_{{h \to 0}} \left[2 + \frac{f'\left(\frac{\pi}{2} - h\right)}{ \cos(h)}\right] = 3