Question
Mathematics Question on Relations and functions
Let f:R→R be a continuous function such that f(3x)–f(x)=x. If f(8)=7, then f(14) is equal to
A
4
B
10
C
11
D
18
Answer
10
Explanation
Solution
f(3x)–f(x)=x …(1)
x→3x
f(x)−f(3x)=3x ⋯(2)
Again x→3x
f(3x)−f(9x)=32x ⋯(3)
Similarly f(3n−2x)−f(3n−1x)=3n−1x ⋅⋅⋅⋅⋅⋅⋅(n)
Adding all these and applying n→∞
n→∞lim(f(3x)−f(3n−1x))=x(1+31+321+⋯)
f(3x)−f(0)=23x
Putting x=38
f(8)–f(0)=4
⇒f(0)=3
Putting x=314
f(14)–3=7
f(14)=10
So, the correct option is (B): 10