Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f:RRf :R→R be a continuous function such that f(3x)f(x)=xf(3x) – f(x) = x. If f(8)=7f(8) = 7, then f(14f(14) is equal to

A

4

B

10

C

11

D

18

Answer

10

Explanation

Solution

f(3x)f(x)=xf(3x)–f(x)=x …(1)

xx3x→\frac x3

f(x)f(x3)=x3f(x)−f(\frac x3)=\frac x3 ⋯(2)

Again xx3x→\frac x3

f(x3)f(x9)=x32f(\frac x3)−f(\frac x9)=\frac {x}{3^2} ⋯(3)

Similarly f(x3n2)f(x3n1)=x3n1f(\frac {x}{3^{n−2}})−f(\frac {x}{3^{n−1}})=\frac {x}{3^{n−1}} ⋅⋅⋅⋅⋅⋅⋅(n)

Adding all these and applying nn→∞

limn(f(3x)f(x3n1))=x(1+13+132+)\lim\limits _{n→∞}(f(3x)−f(\frac {x}{3^{n−1}}))=x(1+\frac 13+\frac {1}{3^2}+⋯)

f(3x)f(0)=3x2f(3x)−f(0)=\frac {3x}{2}

Putting x=83x=\frac 83
f(8)f(0)=4f(8) – f(0) = 4
f(0)=3⇒ f(0) = 3
Putting x=143x=\frac {14}{3}
f(14)3=7f(14)–3=7
f(14)=10f(14)=10

So, the correct option is (B): 1010