Solveeit Logo

Question

Mathematics Question on Definite Integral

Let f : R → R be a continuous function satisfying f(x) + f(x + k) = n, for all x ∈ R where k > 0 and n is a positive integer. If
l1=04nkf(x)dxl_1 = \int_{0}^{4nk} f(x) \, dx and l2=k3kf(x)dxl_2 = \int_{-k}^{3k} f(x) \, dx, then

A

I1+2I2=4nkI_1+2I_2=4nk

B

I1+2I2=2nkI_1+2I_2=2nk

C

I1+nI2=4n2kI_1+nI_2=4n^2k

D

l1+nl2=6n2kl_1+nl_2=6n^2k

Answer

I1+nI2=4n2kI_1+nI_2=4n^2k

Explanation

Solution

The correct answer is (C) : I1+nI2=4n2kI_1​+nI_2​=4n^2k
f : R → R and f(x) + f(x + k) = n ∀ x ∈ R
x → x + k
f(x + k) + f(x + 2k) = n
∴ f(x + 2k) = f(x)
So, period of f(x) is 2k
Now,
I1=04nkf(x)dx=2n02kf(x)dxI_1 = \int_{0}^{4nk} f(x) \, dx = 2n \int_{0}^{2k} f(x) \, dx
=2n[0kf(x)dx+k2kf(x)dx]= 2n \left[ \int_{0}^{k} f(x) \, dx + \int_{k}^{2k} f(x) \, dx \right]
x = t + k ⇒ dx = dt (in second integral)
2n[0kf(x)dx+0kf(t+k)dt]=2n2k2n \left[ \int_{0}^{k} f(x) \, dx + \int_{0}^{k} f(t+k) \, dt \right] = 2n^2k
Now,
I2=k3kf(x)dx=202kf(x)dxI_2 = \int_{-k}^{3k} f(x) \, dx = 2 \int_{0}^{2k} f(x) \, dx
I2=2(nk)I_2=2(nk)
Therefore , I1+nI2=4n2kI_1+nI_2=4n^2k