Question
Mathematics Question on Definite Integral
Let f : R → R be a continuous function satisfying f(x) + f(x + k) = n, for all x ∈ R where k > 0 and n is a positive integer. If
l1=∫04nkf(x)dx and l2=∫−k3kf(x)dx, then
A
I1+2I2=4nk
B
I1+2I2=2nk
C
I1+nI2=4n2k
D
l1+nl2=6n2k
Answer
I1+nI2=4n2k
Explanation
Solution
The correct answer is (C) : I1+nI2=4n2k
f : R → R and f(x) + f(x + k) = n ∀ x ∈ R
x → x + k
f(x + k) + f(x + 2k) = n
∴ f(x + 2k) = f(x)
So, period of f(x) is 2k
Now,
I1=∫04nkf(x)dx=2n∫02kf(x)dx
=2n[∫0kf(x)dx+∫k2kf(x)dx]
x = t + k ⇒ dx = dt (in second integral)
2n[∫0kf(x)dx+∫0kf(t+k)dt]=2n2k
Now,
I2=∫−k3kf(x)dx=2∫02kf(x)dx
I2=2(nk)
Therefore , I1+nI2=4n2k