Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f:RRf :R→R and g:RRg : R→R be two functions defined by f(x)=loge(x2\+1)ex\+1f(x) = log_e(x^2 \+ 1) – e^{–x} \+ 1 and g(x)=12e2xexg(x)=\frac {1−2e^{2x}}{e^x}. Then, for which of the following range of α, the inequality f(g((α1)23))>f(g(α53))f(g((\frac {α−1)^2}{3}))>f(g(α−\frac 53)) holds?

A

(2, 3)

B

(–2, –1)

C

(1, 2)

D

(–1, 1)

Answer

(2, 3)

Explanation

Solution

f(x)=loge(x2+1)ex+1f(x) = log_e (x^2+1) - e^{-x} + 1
f(x)=2xx2+1+exf‘(x) = \frac {2x}{x^2+1}+e^{−x}
f(x)=2x+1x+ex>0f‘(x) = \frac {2}{x+\frac 1x }+ e^{-x}>0 xR∀x∈R
g(x)=ex2exg(x) = e^{−x}−2e^x
g(x)=ex2ex<0g‘(x) = −e^{−x}−2e^x<0 xR∀x∈R
⇒ f(x) is increasing and g(x) is decreasing function.
f(g((α1)23))>f(g(α53))f(g(\frac {(α−1)^2}{3})) > f(g(α−\frac 53))
(α1)23<α53\frac {(α−1)^2}{3} < α−\frac 53
=α25α+6<0= α^2 – 5α + 6 < 0
= (α2)(α3)<0(α – 2)(α – 3) < 0
= α(2,3)α ∈ (2, 3)

So, the correct option is (A): (2,3)(2,3)