Solveeit Logo

Question

Mathematics Question on Functions

Let f:Rf : R - { 54\frac {5}{4} } R\rightarrow R be a function defined as f(x)=5x4x+5f(x) = \frac{5x}{4x+5} . The inverse of ff is the map g:RangefRg : Range\,f\,\rightarrow R - { 54\frac {5}{4} } given by

A

g(y)=y54yg(y) = \frac{y}{5-4y}

B

g(y)=y5+4yg(y) = \frac{y}{5+4y}

C

g(y)=5y54yg(y) = \frac{5y}{5-4y}

D

NoneoftheseNone\, of\, these

Answer

g(y)=5y54yg(y) = \frac{5y}{5-4y}

Explanation

Solution

f : R -\left\\{\frac{5}{4}\right\\}\rightarrow R and f(x)=5x4x+5f \left(x\right)=\frac{5x}{4x+5}
Let y=5x4x+5y=\frac{5x}{4x+5}
4xy+5y=5x\Rightarrow 4xy+5y=5x
x(54y)=5y\Rightarrow x\left(5-4y\right)=5y
x=5y(54y)=f1(y)\Rightarrow x=\frac{5y}{\left(5-4y\right)}=f^{-1}\left(y\right)
f1(x)=5x54x\Rightarrow f^{-1}\left(x\right)=\frac{5x}{5-4x}
or g(y)=5y54yg\left(y\right)=\frac{5y}{5-4y}
which is the inverse of ff is the map g.
Range f \rightarrow R-\left\\{\frac{5}{4}\right\\}