Question
Mathematics Question on Functions
Let f:R−2,6→R be real valued function defined as f(x)=x2−8x+12x2+2x+1 Then range of f is
A
(−∞,−421]∪[421,∞)
B
(−∞,−421]∪[0,∞)
C
(−∞,−421)∪(0,∞)
D
(−∞,−421]∪[1,∞)
Answer
(−∞,−421]∪[0,∞)
Explanation
Solution
Let y=x2−8x+12x2+2x+1
By cross multiplying
yx2−8xy+12y−x2−2x−1=0
x2(y−1)−x(8y+2)+(12y−1)=0
Case 1,y=1
D≥0
⇒(8y+2)2−4(y−1)(12y−1)≥0
⇒y(4y+21)≥0
y∈(−∞,4−21]∪[0,∞)−{1}
Case 2,y=1
x2+2x+1=x2−8x+12
10x=11
x=1011 So, y can be 1
Hence y∈(−∞,4−21]∪[0,∞)
So, the correct option is (B) : (−∞,−421]∪[0,∞)