Solveeit Logo

Question

Mathematics Question on Functions

Let f:R2,6Rf: R -\\{2,6\\} \rightarrow R be real valued function defined as f(x)=x2+2x+1x28x+12f(x)=\frac{x^2+2 x+1}{x^2-8 x+12} Then range of ff is

A

(,214][214,)\left(-\infty,-\frac{21}{4}\right] \cup\left[\frac{21}{4}, \infty\right)

B

(,214][0,)\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)

C

(,214)(0,)\left(-\infty,-\frac{21}{4}\right) \cup(0, \infty)

D

(,214][1,)\left(-\infty,-\frac{21}{4}\right] \cup[1, \infty)

Answer

(,214][0,)\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)

Explanation

Solution

Let y=x2−8x+12x2+2x+1​
By cross multiplying
yx2−8xy+12y−x2−2x−1=0
x2(y−1)−x(8y+2)+(12y−1)=0
Case 1,y=1
D≥0
⇒(8y+2)2−4(y−1)(12y−1)≥0
⇒y(4y+21)≥0

Line with numbers on it

y∈(−∞,4−21​]∪[0,∞)−{1}
Case 2,y=1
x2+2x+1=x2−8x+12
10x=11
x=1011​ So, y can be 1
Hence y∈(−∞,4−21​]∪[0,∞)
So, the correct option is (B) : (,214][0,)\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)