Solveeit Logo

Question

Multivariable Calculus Question on Functions of Two or Three Real Variables

Let f : R2R\R^2 → \R be defined as follows :
f(x,y)={x4y3x6+y6if (x,y)(0,0) 0if (x,y)=(0,0)f(x,y)=\begin{cases} \frac{x^4y^3}{x^6+y^6} & \text{if }(x,y) \ne (0,0)\\\ 0 & \text{if } (x,y)=(0,0) \end{cases}
Then

A

limt0f(t,t)f(0,0)t\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t} exists and equals 12\frac{1}{2}

B

fx(0,0)\frac{∂f}{∂x}|_{(0,0)} exists and equals 0

C

fy(0,0)\frac{∂f}{∂y}|_{(0,0)} exists and equals 0

D

limt0f(t,2t)f(0,0)t\lim\limits_{t \rightarrow 0}\frac{f(t,2t)-f(0,0)}{t} exists and equals 13\frac{1}{3}

Answer

limt0f(t,t)f(0,0)t\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t} exists and equals 12\frac{1}{2}

Explanation

Solution

The correct option is (A) : limt0f(t,t)f(0,0)t\lim\limits_{t \rightarrow 0}\frac{f(t,t)-f(0,0)}{t} exists and equals 12\frac{1}{2}, (B) : fx(0,0)\frac{∂f}{∂x}|_{(0,0)} exists and equals 0 and (C) : fy(0,0)\frac{∂f}{∂y}|_{(0,0)} exists and equals 0.