Solveeit Logo

Question

Mathematics Question on Relations and functions

Let ƒ:NRƒ : N→R be a function such that ƒ(x+y)=2ƒ(x)ƒ(y)ƒ(x + y) = 2ƒ(x) ƒ(y) for natural numbers x and y. If ƒ(1)=2ƒ(1) = 2, then the value of α for which k=110f(α+k)=5123(2201)\displaystyle\sum_{k=1}^{10} f(α+k)=\frac {512}{3} (2^{20}−1) holds, is:

A

2

B

3

C

4

D

6

Answer

4

Explanation

Solution

ƒ(x+y)=2ƒ(x)ƒ(y)ƒ(x + y) = 2ƒ(x)ƒ(y) & ƒ(1)=2ƒ(1) = 2
x=y=1x = y = 1
f(x)=2(2x1)f(x) = 2^{(2x−1)}
f(2)=23⇒ f(2)=2^3
f(3)=25⇒ f(3)=2^5
Now,
K=110f(α+k)=\displaystyle\sum_{K=1}^{10}f(α+k) = 5123(2201) \frac {512}{3}(2^{20}−1)

2\displaystyle\sum_{K=1}^{10}f(α)f(k) = $$ \frac {512}{3}(2^{20}−1)

2f(α)[f(1)+f(2)++f(10)]=2f(α)[f(1)+f(2)+⋯+f(10)] = 5123(2201) \frac {512}{3}(2^{20}−1)

2f(α)[2+23+25+2f(α)[2+2^3+2^5+⋯upto 10 terms]=] = 5123(2201) \frac {512}{3}(2^{20}−1)

2f(α)2(220141)=5123(2201)2f(α)⋅2(\frac {2^{20}−1}{4−1}) = \frac {512}{3}(2^{20}−1)
ƒ(α)=128=22α1ƒ(α) = 128 = 2^{2α} – 1
2α1=72α – 1 = 7
α=4α = 4

So, the correct option is (C): 44