Question
Mathematics Question on Relations and functions
Let ƒ:N→R be a function such that ƒ(x+y)=2ƒ(x)ƒ(y) for natural numbers x and y. If ƒ(1)=2, then the value of α for which k=1∑10f(α+k)=3512(220−1) holds, is:
A
2
B
3
C
4
D
6
Answer
4
Explanation
Solution
ƒ(x+y)=2ƒ(x)ƒ(y) & ƒ(1)=2
x=y=1
f(x)=2(2x−1)
⇒f(2)=23
⇒f(3)=25
Now,
K=1∑10f(α+k)= 3512(220−1)
2\displaystyle\sum_{K=1}^{10}f(α)f(k) = $$ \frac {512}{3}(2^{20}−1)
2f(α)[f(1)+f(2)+⋯+f(10)]= 3512(220−1)
2f(α)[2+23+25+⋯upto 10 terms]= 3512(220−1)
2f(α)⋅2(4−1220−1)=3512(220−1)
ƒ(α)=128=22α–1
2α–1=7
α=4
So, the correct option is (C): 4