Solveeit Logo

Question

Mathematics Question on Relations and Functions

Let f:NNf: N → N be defined by f(n)={n+12if n is odd n2if n is evenf(n) = \begin{cases} \frac{n+1}{2} & \quad \text{if } n \text{ is odd}\\\ \frac{n}{2} & \quad \text{if } n \text{ is even} \end{cases} for all nNn∈N.
State whether the function f is bijective. Justify your answer.

Answer

f(n)={n+12if n is odd n2if n is evenf(n) = \begin{cases} \frac{n+1}{2} & \quad \text{if } n \text{ is odd}\\\ \frac{n}{2} & \quad \text{if } n \text{ is even} \end{cases} for all nNn∈N.
It can be observed that:
f(1)=1+12=1 and f(2)=22=1.f(1)=\frac{1+1}{2}=1\text{ and }f(2)=\frac{2}{2}=1.
f(1)=f(2), where 12.\therefore f(1)=f(2), \text{ where } 1\neq2.
∴ f is not one-one.

Consider a natural number (n) in co-domain N.

Case I: n is odd
n=2r+1n = 2r + 1 for some rNr ∈ N.
Then, there exists 4r+1N4r + 1∈N such that
f(4r+1)=4r+1+12=2r+1f(4r+1)=\frac{4r+1+1}{2}=2r+1.

Case II: n is even
n=2rn = 2r for some rNr ∈ N.
Then,there exists 4rN4r ∈N such that f(4r)=4r2=2rf(4r)=\frac{4r}{2}=2r
∴ f is onto.

Hence, f is not a bijective function.