Solveeit Logo

Question

Question: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that its derivative $f'...

Let f:RRf: \mathbb{R} \rightarrow \mathbb{R} be a differentiable function such that its derivative ff' is a continuous function. Moreover, assume that for all xRx \in \mathbb{R},

0f(x)12.0 \leq |f'(x)| \leq \frac{1}{2}.

Define a sequence of real numbers {an}nN\{a_n\}_{n \in \mathbb{N}} by:

a1=1,a_1 = 1, an+1=f(an) for all nN.a_{n+1} = f(a_n) \text{ for all } n \in \mathbb{N}.

Prove that there exists a positive real number MM such that for all nNn \in \mathbb{N},

anM.|a_n| \leq M.
Answer

The sequence {an}\{a_n\} is bounded. There exists a positive real number MM such that for all nNn \in \mathbb{N}, anM|a_n| \leq M. A possible value for MM is 1+2f(1)11 + 2|f(1) - 1|.

Explanation

Solution

The condition 0f(x)120 \leq |f'(x)| \leq \frac{1}{2} implies that ff is a Lipschitz function with a Lipschitz constant L=12L = \frac{1}{2}. By the Mean Value Theorem, for any two distinct real numbers uu and vv, there exists a cc between uu and vv such that f(u)f(v)=f(c)(uv)f(u) - f(v) = f'(c)(u - v). Taking the absolute value, we get f(u)f(v)=f(c)uv|f(u) - f(v)| = |f'(c)| |u - v|. Since f(c)12|f'(c)| \leq \frac{1}{2}, we have f(u)f(v)12uv|f(u) - f(v)| \leq \frac{1}{2} |u - v| for all u,vRu, v \in \mathbb{R}.

Applying this to consecutive terms of the sequence: an+1an=f(an)f(an1)12anan1|a_{n+1} - a_n| = |f(a_n) - f(a_{n-1})| \leq \frac{1}{2} |a_n - a_{n-1}| for n2n \geq 2. Let C=a2a1=f(a1)a1=f(1)1C = |a_2 - a_1| = |f(a_1) - a_1| = |f(1) - 1|. Then, ak+1akC(12)k1|a_{k+1} - a_k| \leq C \left(\frac{1}{2}\right)^{k-1} for k1k \geq 1.

We can express ana_n as a telescoping sum: an=a1+k=1n1(ak+1ak)a_n = a_1 + \sum_{k=1}^{n-1} (a_{k+1} - a_k) for n2n \geq 2. Using the triangle inequality: ana1+k=1n1ak+1ak1+k=1n1C(12)k1|a_n| \leq |a_1| + \sum_{k=1}^{n-1} |a_{k+1} - a_k| \leq 1 + \sum_{k=1}^{n-1} C \left(\frac{1}{2}\right)^{k-1}.

The sum is a finite geometric series: k=1n1C(12)k1=Cj=0n2(12)j=C1(1/2)n111/2=2C(1(12)n1)\sum_{k=1}^{n-1} C \left(\frac{1}{2}\right)^{k-1} = C \sum_{j=0}^{n-2} \left(\frac{1}{2}\right)^j = C \cdot \frac{1 - (1/2)^{n-1}}{1 - 1/2} = 2C \left(1 - \left(\frac{1}{2}\right)^{n-1}\right).

Thus, for n2n \geq 2: an1+2C(1(12)n1)|a_n| \leq 1 + 2C \left(1 - \left(\frac{1}{2}\right)^{n-1}\right). Since 1(1/2)n1<11 - (1/2)^{n-1} < 1, we have an<1+2C|a_n| < 1 + 2C. For n=1n=1, a1=1|a_1|=1, which is also 1+2C\leq 1 + 2C as C0C \geq 0. Therefore, for all nNn \in \mathbb{N}, an1+2C=1+2f(1)1|a_n| \leq 1 + 2C = 1 + 2|f(1) - 1|. Let M=1+2f(1)1M = 1 + 2|f(1) - 1|. Since f(1)f(1) is a real number, MM is a positive real number. This proves that the sequence {an}\{a_n\} is bounded.