Question
Mathematics Question on Continuity and differentiability
Let f:R→R be a function given by
f(x)=⎩⎨⎧x21−cos2x,α,β1−cosx/x,x<0x=0, where α,β∈R.x>0
If f is continuous at x=0, then α2+β2 is equal to:
A
48
B
12
C
3
D
6
Answer
12
Explanation
Solution
To ensure continuity at x=0, we require limx→0−f(x)=limx→0+f(x)=f(0).
Left-hand limit:
limx→0−f(x)=limx→0−x21−cos2x=2
This gives f(0)=α=2.
Right-hand limit:
limx→0+f(x)=limx→0+xβ1−cosx=2β=2⟹β=22
Calculating α2+β2:
α2+β2=4+8=12