Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let f:RRf : \mathbb{R} \to \mathbb{R} be a function given by
f(x)={1cos2xx2,x<0α,x=0, where α,βR.β1cosx/x,x>0f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x < 0 \\\\\alpha, & x = 0, \text{ where } \alpha, \beta \in \mathbb{R}. \\\\\beta \sqrt{1 - \cos x} / x, & x > 0 \end{cases}
If ff is continuous at x=0x = 0, then α2+β2\alpha^2 + \beta^2 is equal to:

A

48

B

12

C

3

D

6

Answer

12

Explanation

Solution

To ensure continuity at x=0x = 0, we require limx0f(x)=limx0+f(x)=f(0)\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0).

Left-hand limit:

limx0f(x)=limx01cos2xx2=2\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos 2x}{x^2} = 2

This gives f(0)=α=2f(0) = \alpha = 2.

Right-hand limit:

limx0+f(x)=limx0+β1cosxx=β2=2    β=22\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\beta \sqrt{1 - \cos x}}{x} = \frac{\beta}{\sqrt{2}} = 2 \implies \beta = 2\sqrt{2}

Calculating α2+β2\alpha^2 + \beta^2:

α2+β2=4+8=12\alpha^2 + \beta^2 = 4 + 8 = 12