Solveeit Logo

Question

Mathematics Question on Functions

Let f:RRf: \mathbb{R} \to \mathbb{R} and g:RRg: \mathbb{R} \to \mathbb{R} be defined as: f(x)={logex,if x>0, ex,if x0,f(x) = \begin{cases} \log_e x, & \text{if } x > 0, \\\ e^{-x}, & \text{if } x \leq 0, \end{cases} and
g(x) = \begin{cases} x, & \text{if } x \geq 0, \\\ e^x, & \text{if } x < 0\. \end{cases} Then gf:RRg \circ f: \mathbb{R} \to \mathbb{R} is:

A

one-one but not onto

B

neither one-one nor onto

C

onto but not one-one

D

both one-one and onto

Answer

neither one-one nor onto

Explanation

Solution

Consider:

g(f(x))={g(logex),x>0 g(ex),x0g(f(x)) = \begin{cases} g(\log_e x), & x > 0 \\\ g(e^{-x}), & x \leq 0 \end{cases}

For x>0x > 0, we have:

f(x)=logex    g(f(x))=g(logex)=logex(since logex0)f(x) = \log_e x \implies g(f(x)) = g(\log_e x) = \log_e x \quad (\text{since } \log_e x \geq 0)

For x0x \leq 0, we have:

f(x)=ex    g(f(x))=g(ex)=ex(since ex>0 for all x0)f(x) = e^{-x} \implies g(f(x)) = g(e^{-x}) = e^{-x} \quad (\text{since } e^{-x} > 0 \text{ for all } x \leq 0)

Thus, the function g(f(x))g(f(x)) is given by:

g(f(x))={logex,x>0 ex,x0g(f(x)) = \begin{cases} \log_e x, & x > 0 \\\ e^{-x}, & x \leq 0 \end{cases}

Analyzing this function, we observe:

For x>0x > 0, g(f(x))=logexg(f(x)) = \log_e x is an increasing function but not onto as it maps to (0,)(0, \infty).

For x0x \leq 0, g(f(x))=exg(f(x)) = e^{-x} is a decreasing function and does not cover the entire range of real numbers.
Therefore, gfg \circ f is neither one-one nor onto.