Question
Mathematics Question on Relations and functions
Let f:R→R be a function defined by f(x)=4x+24x and M=∫f(a)f(1−a)xsin4(x(1−x))dx, N=∫f(a)f(1−a)sin4(x(1−x))dx;a=21. If αM=βN, α,β∈N, then the least value of α2+β2 is equal to _____
Answer
Given:
f(a)+f(1−a)=1
Calculate M and N:
M=∫f(0)f(1)(1−x)sin4(x(1−x))dx
From symmetry, we have:
M=N−M⟹2M=N
With α=2 and β=1, the least value is:
α2+β2=22+12=5