Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f:RRf : \mathbb{R} \rightarrow \mathbb{R} be a function defined by f(x)=4x4x+2f(x) = \frac{4^x}{4^x + 2} and M=f(a)f(1a)xsin4(x(1x))dx,M = \int_{f(a)}^{f(1 - a)} x \sin^4 \left( x (1 - x) \right) \, dx, N=f(a)f(1a)sin4(x(1x))dx;a12.N = \int_{f(a)}^{f(1 - a)} \sin^4 \left( x (1 - x) \right) \, dx; \quad a \neq \frac{1}{2}. If αM=βN\alpha M = \beta N, α,βN\alpha, \beta \in \mathbb{N}, then the least value of α2+β2\alpha^2 + \beta^2 is equal to _____

Answer

Given:

f(a)+f(1a)=1f(a) + f(1 - a) = 1

Calculate MM and NN:

M=f(0)f(1)(1x)sin4(x(1x))dxM = \int_{f(0)}^{f(1)} (1 - x) \sin^4(x(1 - x)) \, dx

From symmetry, we have:

M=NM    2M=NM = N - M \quad \implies \quad 2M = N

With α=2\alpha = 2 and β=1\beta = 1, the least value is:

α2+β2=22+12=5\alpha^2 + \beta^2 = 2^2 + 1^2 = 5