Solveeit Logo

Question

Mathematics Question on integral

Let f:RRf : \mathbb{R} \rightarrow \mathbb{R} be a function defined by

f(x)=x(1+x4)1/4f(x) = \frac{x}{(1 + x^4)^{1/4}}

and g(x)=f(f(f(x)))g(x) = f(f(f(x))). Then

18833433x3g(x)dx18 \int_{\sqrt[3]{\frac{8}{3}}}^{\sqrt[3]{\frac{4}{3}}} x^3 g(x) \, dx

equals:

A

33

B

36

C

42

D

39

Answer

39

Explanation

Solution

First, let’s calculate g(x)=f(f(f(f(x))))g(x) = f(f(f(f(x)))).

Starting with f(x)f(x):

f(x)=x(1+x4)1/4.f(x) = \frac{x}{(1 + x^4)^{1/4}}.

Now, let’s calculate f(f(x))f(f(x)):

f(f(x))=f(x)(1+f(x)4)1/4=x(1+x4)1/4(1+(x(1+x4)1/4)4)1/4=x(1+2x4)1/4.f(f(x)) = \frac{f(x)}{\left(1 + f(x)^4\right)^{1/4}} = \frac{\frac{x}{(1 + x^4)^{1/4}}}{\left(1 + \left(\frac{x}{(1 + x^4)^{1/4}}\right)^4\right)^{1/4}} = \frac{x}{(1 + 2x^4)^{1/4}}.

Next, we calculate f(f(f(x)))f(f(f(x))):

f(f(f(x)))=x(1+3x4)1/4.f(f(f(x))) = \frac{x}{(1 + 3x^4)^{1/4}}.

Finally, we calculate f(f(f(f(x))))f(f(f(f(x)))):

f(f(f(f(x))))=x(1+4x4)1/4.f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}}.

Thus, g(x)=f(f(f(f(x))))=x(1+4x4)1/4g(x) = f(f(f(f(x)))) = \frac{x}{(1 + 4x^4)^{1/4}}.

Now, we need to evaluate the integral:

0184x3g(x)dx=0184x4(1+4x4)1/4dx.\int_{0}^{\sqrt[4]{18}} x^3 g(x) \, dx = \int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx.

Let u=1+4x4u = 1 + 4x^4. Then du=16x3dxdu = 16x^3 dx, which gives x3dx=du16x^3 dx = \frac{du}{16}.

When x=0x = 0, u=1u = 1; and when x=184x = \sqrt[4]{18}, u=9u = 9.

Substituting into the integral, we have:

0184x4(1+4x4)1/4dx=19(u1)/4u1/4du16.\int_{0}^{\sqrt[4]{18}} \frac{x^4}{(1 + 4x^4)^{1/4}} \, dx = \int_{1}^{9} \frac{(u - 1)/4}{u^{1/4}} \cdot \frac{du}{16}.

Simplifying:

=16419(u3/4u1/4)du.= \frac{1}{64} \int_{1}^{9} \left( u^{3/4} - u^{-1/4} \right) du.

Now, integrate term by term:

=164[u7/47/4u3/43/4]19.= \frac{1}{64} \left[ \frac{u^{7/4}}{7/4} - \frac{u^{3/4}}{3/4} \right]_{1}^{9}.

Simplifying further:

=164(4797/44393/4(4717/44313/4)).= \frac{1}{64} \left( \frac{4}{7} \cdot 9^{7/4} - \frac{4}{3} \cdot 9^{3/4} - \left( \frac{4}{7} \cdot 1^{7/4} - \frac{4}{3} \cdot 1^{3/4} \right) \right).

Calculating each term:

=164(4781439(4743)).= \frac{1}{64} \left( \frac{4}{7} \cdot 81 - \frac{4}{3} \cdot 9 - \left( \frac{4}{7} - \frac{4}{3} \right) \right).

After evaluating all terms, we find:

=39.= 39.