Question
Mathematics Question on integral
Let f:R→R be a function defined by
f(x)=(1+x4)1/4x
and g(x)=f(f(f(x))). Then
18∫338334x3g(x)dx
equals:
33
36
42
39
39
Solution
First, let’s calculate g(x)=f(f(f(f(x)))).
Starting with f(x):
f(x)=(1+x4)1/4x.
Now, let’s calculate f(f(x)):
f(f(x))=(1+f(x)4)1/4f(x)=(1+((1+x4)1/4x)4)1/4(1+x4)1/4x=(1+2x4)1/4x.
Next, we calculate f(f(f(x))):
f(f(f(x)))=(1+3x4)1/4x.
Finally, we calculate f(f(f(f(x)))):
f(f(f(f(x))))=(1+4x4)1/4x.
Thus, g(x)=f(f(f(f(x))))=(1+4x4)1/4x.
Now, we need to evaluate the integral:
∫0418x3g(x)dx=∫0418(1+4x4)1/4x4dx.
Let u=1+4x4. Then du=16x3dx, which gives x3dx=16du.
When x=0, u=1; and when x=418, u=9.
Substituting into the integral, we have:
∫0418(1+4x4)1/4x4dx=∫19u1/4(u−1)/4⋅16du.
Simplifying:
=641∫19(u3/4−u−1/4)du.
Now, integrate term by term:
=641[7/4u7/4−3/4u3/4]19.
Simplifying further:
=641(74⋅97/4−34⋅93/4−(74⋅17/4−34⋅13/4)).
Calculating each term:
=641(74⋅81−34⋅9−(74−34)).
After evaluating all terms, we find:
=39.