Solveeit Logo

Question

Mathematics Question on integral

Let f:RRf : \mathbb{R} \rightarrow \mathbb{R} be defined f(x)=ae2x+bex+cxf(x) = ae^{2x} + be^x + cx. If f(0)=1f(0) = -1, f(loge2)=21f'(\log_e 2) = 21 and
0loge4(f(x)cx)dx=392\int_{0}^{\log_e 4} (f(x) - cx) \, dx = \frac{39}{2}
then the value of a+b+c|a + b + c| equals:

A

16

B

10

C

12

D

8

Answer

8

Explanation

Solution

The function is given by:

f(x)=ae2x+bex+cf(x) = ae^{2x} + be^x + c.

Given f(0)=1f(0) = -1:

f(0)=a+b+c=1f(0) = a + b + c = -1.

Differentiate f(x)f(x):

f(x)=2ae2x+bexf'(x) = 2ae^{2x} + be^x.

Given f(loge2)=21f'( \log_e 2) = 21:

8a+2b=214a+b=10.58a + 2b = 21 \Rightarrow 4a + b = 10.5.

Evaluate the integral:

0loge4(f(x)cx)dx=0loge4(ae2x+bex+ccx)dx=392\int_{0}^{\log_e 4} (f(x) - cx) dx = \int_{0}^{\log_e 4} (ae^{2x} + be^x + c - cx) dx = \frac{39}{2}.

Break into parts and evaluate each:

15a2+3b+cloge4c×(loge4)22=392\frac{15a}{2} + 3b + c \log_e 4 - c \times \frac{(\log_e 4)^2}{2} = \frac{39}{2}.

Solve for aa, bb, and cc. The value of a+b+c|a + b + c| is:

15a+6b=3915a + 6b = 39

15a6a6=3915a - 6a - 6 = 39

9a=45a=59a = 45 \Rightarrow a = 5

b=6b = -6

c=2140+12=7c = 21 - 40 + 12 = -7

a+b+c=8a + b + c = -8

a+b+c=8|a + b + c| = 8