Question
Mathematics Question on integral
Let f:R→R be defined f(x)=ae2x+bex+cx. If f(0)=−1, f′(loge2)=21 and
∫0loge4(f(x)−cx)dx=239
then the value of ∣a+b+c∣ equals:
A
16
B
10
C
12
D
8
Answer
8
Explanation
Solution
The function is given by:
f(x)=ae2x+bex+c.
Given f(0)=−1:
f(0)=a+b+c=−1.
Differentiate f(x):
f′(x)=2ae2x+bex.
Given f′(loge2)=21:
8a+2b=21⇒4a+b=10.5.
Evaluate the integral:
∫0loge4(f(x)−cx)dx=∫0loge4(ae2x+bex+c−cx)dx=239.
Break into parts and evaluate each:
215a+3b+cloge4−c×2(loge4)2=239.
Solve for a, b, and c. The value of ∣a+b+c∣ is:
15a+6b=39
15a−6a−6=39
9a=45⇒a=5
b=−6
c=21−40+12=−7
a+b+c=−8
∣a+b+c∣=8