Solveeit Logo

Question

Mathematics Question on Limits

Let f:R(0,)f : \mathbb{R} \rightarrow (0, \infty) be a strictly increasing function such that limxf(7x)f(x)=1.\lim_{x \to \infty} \frac{f(7x)}{f(x)} = 1.Then, the value of limx[f(5x)f(x)1]\lim_{x \to \infty} \left[ \frac{f(5x)}{f(x)} - 1 \right]is equal to

A

4

B

0

C

75\frac{7}{5}

D

1

Answer

0

Explanation

Solution

Given:

limxf(7x)f(x)=1\lim_{x \to \infty} \frac{f(7x)}{f(x)} = 1

Since ff is strictly increasing, we have:

f(x)<f(5x)<f(7x)f(x) < f(5x) < f(7x)

This implies:

limxf(5x)f(x)=1\lim_{x \to \infty} \frac{f(5x)}{f(x)} = 1

Then:

limx[f(5x)f(x)1]=11=0\lim_{x \to \infty} \left[ \frac{f(5x)}{f(x)} - 1 \right] = 1 - 1 = 0

Thus, the answer is: 0.