Question
Mathematics Question on Differential equations
Let f:R−0→R be a function satisfyingf(yx)=f(y)f(x)for all x,y, f(y)=0. If f′(1)=2024,then
A
xf′(x)−2024f(x)=0
B
xf′(x)+2024f(x)=0
C
xf′(x)+f(x)=2024
D
xf′(x)−2023f(x)=0
Answer
xf′(x)−2024f(x)=0
Explanation
Solution
The functional equation given is:
f(yx)=f(y)f(x).
This suggests an exponential-like function. Assume f(x)=xk for some constant k.
Verify that f(x)=xk satisfies the functional equation:
f(yx)=(yx)k=ykxk=f(y)f(x).
So, f(x)=xk is a valid solution.
Differentiating f(x)=xk:
f′(x)=kxk−1.
Given f′(1)=2024:
f′(1)=k=2024.
Therefore, f(x)=x2024.
Check which option matches: Substitute f(x)=x2024 and f′(x)=2024x2023 in each option.
Option (1):
xf′(x)−2024f(x)=x×2024x2023−2024x2024=0.
Therefore, the correct answer is:
xf′(x)−2024f(x)=0.