Solveeit Logo

Question

Mathematics Question on Differential equations

Let f:R0Rf : \mathbb{R} - \\{0\\} \rightarrow \mathbb{R} be a function satisfyingf(xy)=f(x)f(y)f\left( \frac{x}{y} \right) = \frac{f(x)}{f(y)}for all x,yx, y, f(y)0f(y) \neq 0. If f(1)=2024f'(1) = 2024,then

A

xf(x)2024f(x)=0x f'(x) - 2024 f(x) = 0

B

xf(x)+2024f(x)=0x f'(x) + 2024 f(x) = 0

C

xf(x)+f(x)=2024x f'(x) + f(x) = 2024

D

xf(x)2023f(x)=0x f'(x) - 2023 f(x) = 0

Answer

xf(x)2024f(x)=0x f'(x) - 2024 f(x) = 0

Explanation

Solution

The functional equation given is:

f(xy)=f(x)f(y).f\left( \frac{x}{y} \right) = \frac{f(x)}{f(y)}.

This suggests an exponential-like function. Assume f(x)=xkf(x) = x^k for some constant kk.

Verify that f(x)=xkf(x) = x^k satisfies the functional equation:

f(xy)=(xy)k=xkyk=f(x)f(y).f\left( \frac{x}{y} \right) = \left( \frac{x}{y} \right)^k = \frac{x^k}{y^k} = \frac{f(x)}{f(y)}.

So, f(x)=xkf(x) = x^k is a valid solution.

Differentiating f(x)=xkf(x) = x^k:

f(x)=kxk1.f'(x) = kx^{k-1}.

Given f(1)=2024f'(1) = 2024:

f(1)=k=2024.f'(1) = k = 2024.

Therefore, f(x)=x2024f(x) = x^{2024}.

Check which option matches: Substitute f(x)=x2024f(x) = x^{2024} and f(x)=2024x2023f'(x) = 2024x^{2023} in each option.

Option (1):

xf(x)2024f(x)=x×2024x20232024x2024=0.xf'(x) - 2024f(x) = x \times 2024x^{2023} - 2024x^{2024} = 0.

Therefore, the correct answer is:

xf(x)2024f(x)=0.xf'(x) - 2024f(x) = 0.