Solveeit Logo

Question

Question: Let \[f\left( x \right)=x{{e}^{x\left( 1-x \right)}},\text{ }x\in R\]. Then (a) \[{{f}^{'}}\left( ...

Let f(x)=xex(1x), xRf\left( x \right)=x{{e}^{x\left( 1-x \right)}},\text{ }x\in R. Then
(a) f(x)0 in [12,1]{{f}^{'}}\left( x \right)\ge 0\text{ in }\left[ \dfrac{-1}{2},1 \right]
(b) f(x)<0 in [12,1]{{f}^{'}}\left( x \right)<0\text{ in }\left[ \dfrac{-1}{2},1 \right]
(c) f(x)0xR{{f}^{'}}\left( x \right)\ge 0\forall x\in R
(d) f(x)<0xR{{f}^{'}}\left( x \right)<0\forall x\in R

Explanation

Solution

Hint: If h(x)h(x) is a composite function given by h(x)=f(g(x))h(x)=f(g(x)) , thenh(x)=f(g(x))×g(x)h'(x)=f'(g(x))\times g'(x). Use the fact that if x1{{x}_{1}} and x2{{x}_{2}}are the roots of any quadratic equation of xxgiven by f(x)ax2+bx+c=0f(x)\equiv a{{x}^{2}}+bx+c=0, where a,ba,band cc are real and a>0a>0, then f(x3)0,x3[x1,x2]f({{x}_{3}})\le 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}] and hence , f(x3)0,x3[x1,x2]-f({{x}_{3}})\ge 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]

Complete step-by-step answer:
The given function is f(x)=xex(1x)f\left( x \right)=x{{e}^{x\left( 1-x \right)}}
It is of the type f(x)=g(x).h(p(x))f\left( x \right)=g\left( x \right).h\left( p\left( x \right) \right)where g(x)=xh(x)=exp(x)=x(1x)g\left( x \right)=x\text{, }h\left( x \right)={{e}^{x}}\text{, }p\left( x \right)=x\left( 1-x \right)
Now ,first we will determine the derivative of the function h(p(x))h(p(x))with respect to xx . It will be helpful while applying product rules to determine the derivative of f(x)f\left( x \right).
Clearly, we can see ex(1x){{e}^{x\left( 1-x \right)}}is a composite function . So , to determine the value of the derivative of ex(1x){{e}^{x\left( 1-x \right)}} with respect to xx, we need to apply chain rule of differentiation. The chain rule of differentiation is given as: “If h(x)h(x) is a composite function given by h(x)=f(g(x))h(x)=f(g(x)) , then the derivative of h(x)h(x)with respect to xxis h(x)=f(g(x))×g(x)h'(x)=f'(g(x))\times g'(x).”
So , ddxh(p(x))=ddxex(1x)\dfrac{d}{dx}h\left( p\left( x \right) \right)=\dfrac{d}{dx}{{e}^{x\left( 1-x \right)}}
=ex(1x).ddx(x(1x))={{e}^{x\left( 1-x \right)}}.\dfrac{d}{dx}\left( x\left( 1-x \right) \right)
=ex(1x).ddxp(x)={{e}^{x\left( 1-x \right)}}.\dfrac{d}{dx}p\left( x \right)
Now to evaluate ddxp(x)\dfrac{d}{dx}p\left( x \right), we need to apply product rule.
Now , we know , the product rule of differentiation is given as “If yyis a function given as y=f(x).g(x)y=f(x).g(x), then the derivative of yywith respect to xxis given as y=ddx(f(x).g(x))=g(x).f(x)+f(x).g(x)y'=\dfrac{d}{dx}(f(x).g(x))=g(x).{{f}^{'}}(x)+f(x).{{g}^{'}}(x)”.
So , ddxp(x)=ddxx(1x)\dfrac{d}{dx}p\left( x \right)=\dfrac{d}{dx}x\left( 1-x \right)
=x(1)+(1x).1=x\left( -1 \right)+\left( 1-x \right).1
=x+1x=-x+1-x
=12x=1-2x
ddxh(p(x))=ex(1x).(12x)\therefore \dfrac{d}{dx}h\left( p\left( x \right) \right)={{e}^{x\left( 1-x \right)}}.\left( 1-2x \right)
Now , we will evaluate the derivative of f(x)f\left( x \right)with respect toxx.
To evaluate the derivative of f(x)f\left( x \right)with respect toxx, i.e. ddxf(x)=ddx(g(x).h(p(x)))\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( g\left( x \right).h\left( p\left( x \right) \right) \right), we need to apply product rule.
So , f(x)=ddxh(p(x)).g(x)+h(p(x)).ddx(g(x)){{f}^{'}}\left( x \right)=\dfrac{d}{dx}h\left( p\left( x \right) \right).g\left( x \right)+h\left( p\left( x \right) \right).\dfrac{d}{dx}\left( g\left( x \right) \right)
=ex(1x).(12x).x+ex(1x).1={{e}^{x\left( 1-x \right)}}.\left( 1-2x \right).x+{{e}^{x\left( 1-x \right)}}.1
=ex(1x).(1+x2x2)={{e}^{x\left( 1-x \right)}}.\left( 1+x-2{{x}^{2}} \right)
=2ex(1x)(x1)(x+12)=-2{{e}^{x\left( 1-x \right)}}\left( x-1 \right)\left( x+\dfrac{1}{2} \right)
Now , we can see f(x)=0{{f}^{'}}\left( x \right)=0at x=12x=-\dfrac{1}{2}and at x=1x=1.
We know , ex(1x)0xR{{e}^{x\left( 1-x \right)}}\ge 0\forall x\in R and (x1)(x+12)\left( x-1 \right)\left( x+\dfrac{1}{2} \right) represents a quadratic in xx.
Now , if x1{{x}_{1}} and x2{{x}_{2}}are the roots of any quadratic equation of xxgiven by f(x)ax2+bx+c=0f(x)\equiv a{{x}^{2}}+bx+c=0, where a,ba,band cc are real and a>0a>0, then f(x3)0,x3[x1,x2]f({{x}_{3}})\le 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}] and hence , f(x3)0,x3[x1,x2]-f({{x}_{3}})\ge 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]
So , f(x)0{{f}^{'}}\left( x \right)\ge 0 when 12x1-\dfrac{1}{2}\le x\le 1.
So , f(x)0{{f}^{'}}\left( x \right)\ge 0in [12,1]\left[ -\dfrac{1}{2},1 \right].
OPTION (a) is the correct answer.

Note: ex(1x){{e}^{x\left( 1-x \right)}}is a composite function. Hence , its derivative will be ex(1x).(12x){{e}^{x\left( 1-x \right)}}.\left( 1-2x \right)and not ex(1x){{e}^{x\left( 1-x \right)}}. Students generally make this mistake . These details should be taken care of and such mistakes should be avoided as these mistakes result in getting a wrong answer .