Solveeit Logo

Question

Question: Let \(f\left( x \right)={{x}^{2}},x\in \mathbb{R}\). For any \(A\subset R\), define \(g\left( A \rig...

Let f(x)=x2,xRf\left( x \right)={{x}^{2}},x\in \mathbb{R}. For any ARA\subset R, define g\left( A \right)=\left\\{ x\in \mathbb{R}:g\left( x \right)\in S \right\\}. If S=[0,4]S=\left[ 0,4 \right] then which one of the following statements is not true?
[a] f(g(S))f(S)f\left( g\left( S \right) \right)\ne f\left( S \right)
[b] f(g(S))=Sf\left( g\left( S \right) \right)=S
[c] g(f(S))=f(S)g\left( f\left( S \right) \right)=f\left( S \right)
[d] g(f(S))Sg\left( f\left( S \right) \right)\ne S

Explanation

Solution

Use the fact that if A=B,A=B, then ABA\subseteq B and BAB\subseteq A. Use the fact that if ABA\subseteq B, then xAxB\forall x\in A\Rightarrow x\in B. Use the fact that f\left( A \right)=\left\\{ f\left( x \right):x\in A \right\\} . Hence verify which of the options is correct and which of the options is incorrect.

Complete step-by-step answer:
We have S=[0,4]S=\left[ 0,4 \right]
Hence, we have
f\left( S \right)=\left\\{ f\left( x \right):x\in \left[ 0,4 \right] \right\\}
Claim: f(S)=[0,16]f\left( S \right)=\left[ 0,16 \right]
Proof:
Let x[0,16]0x16x\in \left[ 0,16 \right]\Rightarrow 0\le x\le 16
Hence, we have
y[0,4],y=x\exists y\in \left[ 0,4 \right],y=\sqrt{x} such that y2=x{{y}^{2}}=x
Therefore, we have
yS\exists y\in S such that f(y)=xf\left( y \right)=x
Hence, we conclude that
xf(S)x\in f\left( S \right)
Since x was arbitrary, we have
x[0,16]xf(S)\forall x\in \left[ 0,16 \right]\Rightarrow x\in f\left( S \right)
Hence, we have
[0,16]f(S)\left[ 0,16 \right]\subseteq f\left( S \right)
Now let xf(S)ySx\in f\left( S \right)\Rightarrow \exists y\in S such that f(y)=xf\left( y \right)=x
Hence, we have
yS,y2=xy\in S,{{y}^{2}}=x
Since yS,0y40y2160x16y\in S,0\le y\le 4\Rightarrow 0\le {{y}^{2}}\le 16\Rightarrow 0\le x\le 16
Hence, we have
x[0,16]x\in \left[ 0,16 \right]
Since x was arbitrary, we have
xf(S)x[0,16]\forall x\in f\left( S \right)\Rightarrow x\in \left[ 0,16 \right]
Hence, we have
f(S)[0,16]f\left( S \right)\subseteq \left[ 0,16 \right]
Combining the results f(S)[0,16]f\left( S \right)\subseteq \left[ 0,16 \right] and [0,16]f(S)\left[ 0,16 \right]\subseteq f\left( S \right), we have
f(S)=[0,16]f\left( S \right)=\left[ 0,16 \right]
We have g\left( A \right)=\left\\{ x\in \mathbb{R}:f\left( x \right)\in A \right\\}
We claim that g(S)=[2,2]g\left( S \right)=\left[ -2,2 \right]
Proof:
Let x[2,2]2x20x240f(x)4x\in \left[ -2,2 \right]\Rightarrow -2\le x\le 2\Rightarrow 0\le {{x}^{2}}\le 4\Rightarrow 0\le f\left( x \right)\le 4
Hence, we have
f(x)Sxg(S)f\left( x \right)\in S\Rightarrow x\in g\left( S \right)
Since x was arbitrary, we have
x[2,2]xg(S)\forall x\in \left[ -2,2 \right]\Rightarrow x\in g\left( S \right)
Hence, we have
[2,2]g(S)\left[ -2,2 \right]\subseteq g\left( S \right)
Now let xg(S)f(x)S0x24x\in g\left( S \right)\Rightarrow f\left( x \right)\in S\Rightarrow 0\le {{x}^{2}}\le 4
Hence, we have
2x2x[2,2]-2\le x\le 2\Rightarrow x\in \left[ -2,2 \right]
Since x was arbitrary, we have
xg(S)x[2,2]\forall x\in g\left( S \right)\Rightarrow x\in \left[ -2,2 \right]
Hence, we have
g(S)[2,2]g\left( S \right)\subseteq \left[ -2,2 \right]
Hence, we have
g(S)=[2,2]g\left( S \right)=\left[ -2,2 \right]
Claim: f(g(S))=[0,4]=Sf\left( g\left( S \right) \right)=\left[ 0,4 \right]=S
Proof:
Let x[0,4]y[2,2],y=xx\in \left[ 0,4 \right]\Rightarrow \exists y\in \left[ -2,2 \right],y=\sqrt{x} such that y2=x{{y}^{2}}=x
f(y)=x,yg(S)\Rightarrow f\left( y \right)=x,y\in g\left( S \right)
Hence, we havexf(g(S))x\in f\left( g\left( S \right) \right)
Hence, we have
Sf(g(S))S\subseteq f\left( g\left( S \right) \right)
Now let xf(g(S))y[2,2]x\in f\left( g\left( S \right) \right)\Rightarrow \exists y\in \left[ -2,2 \right] such that f(y)=xf\left( y \right)=x
2y2,x=y20x4\Rightarrow -2\le y\le 2,x={{y}^{2}}\Rightarrow 0\le x\le 4
Hence, we have
x[0,4]x\in \left[ 0,4 \right]
Hence, we have f(g(S))Sf\left( g\left( S \right) \right)\subseteq S
Hence, we have
f(g(S))=Sf\left( g\left( S \right) \right)=S
Claim: g(f(S))=[4,4]g\left( f\left( S \right) \right)=\left[ -4,4 \right]
Proof:
Let x[4,4]4x40x2160f(x)16x\in \left[ -4,4 \right]\Rightarrow -4\le x\le 4\Rightarrow 0\le {{x}^{2}}\le 16\Rightarrow 0\le f\left( x \right)\le 16
Hence, we have
f(x)f(S)xg(f(S))f\left( x \right)\in f\left( S \right)\Rightarrow x\in g\left( f\left( S \right) \right)
Hence, we have
[4,4]g(f(S))\left[ -4,4 \right]\subseteq g\left( f\left( S \right) \right)
Now let xg(f(S))f(x)f(S)0x216x\in g\left( f\left( S \right) \right)\Rightarrow f\left( x \right)\in f\left( S \right)\Rightarrow 0\le {{x}^{2}}\le 16
Hence, we have
4x4x[4,4]-4\le x\le 4\Rightarrow x\in \left[ -4,4 \right]
Hence, we have
g(f(S))[4,4]g\left( f\left( S \right) \right)\subseteq \left[ -4,4 \right]
Hence, we have
g(f(S))=[4,4]g\left( f\left( S \right) \right)=\left[ -4,4 \right]
Hence the only option which is incorrect is option [c].

So, the correct answer is “Option c”.

Note: [1] Many students make a mistake by claiming that xAxBx\in A\Rightarrow x\in B means A=BA=B which is incorrect. This leads to incorrect solutions.
[2] The set g(S)g\left( S \right) is denoted by f1(S){{f}^{-1}}\left( S \right). If f(g(S))=g(f(S))SRf\left( g\left( S \right) \right)=g\left( f\left( S \right) \right)\forall S\subseteq \mathbb{R} then the function f(x) is a one-one function