Question
Mathematics Question on Functions
Let f(x)=sin(6πsin(2πsinx)) for all x∈R and g(x)=2π sinx for all x∈R. Let (fog)(x) denote f(g(x)) and (gof)(x) denote g(f(x)). Then which of the following is (are) true ?
Range of f is [−21,21]
Range of fog is [−21,21]
x→0limg(x)f(x)=6π
There is an x∈R such that (gof)(x)=1
x→0limg(x)f(x)=6π
Solution
f(x)=sin(6πsin(2πsinx))
−1≤sinx≤1asx?R
−2π≤2πsinx≤2π
−1≤sin(2πsinx)≤1
−6π≤6πsin(2πsinx)≤6π
−21≤sin(6πsin(2πsinx))≤21
Range ?[−21,21]
So option (A) is correct.
f o g(x)
Range of g(x) =[−2π,2π]n Domain of f(x) = R
Common =[−2π,2π]
Range of fog(x) = Range of f(x) when input [−2π,2π]
=[−21,21]
So option (B) is correct
x→0lim2πsinxsin(6πsin(2πsinx))=x→0lim(6πsin(2πsinx)sin(6πsin(2πsinx)))((2πsinx)6πsin(2πsinx))
=x→0lim6π.(1)=6π
So option (B) is correct
g o f(x)
Range of f(x) =[−21,21]
g o f(x) =2πsinf(x)
=2πsin21to21(sin(6πsin(2πsinx)))=1
sin(21to21)=π2≈0.6379 (not possible)
21≈28.5∘
So option (D) is not correct.