Solveeit Logo

Question

Mathematics Question on Functions

Let f(x)=sin(π6sin(π2sinx))f\left(x\right) = sin\left(\frac{\pi}{6}sin\left(\frac{\pi}{2}sin\,x\right)\right) for all xRx \in R and g(x)=π2g\left(x\right) = \frac{\pi}{2} sinxsin\, x for all xRx \in R. Let (fog)(x)(fog) (x) denote f(g(x))f(g(x)) and (gof)(x)(gof) (x) denote g(f(x))g(f(x)). Then which of the following is (are) true ?

A

Range of ff is [12,12]\left[-\frac{1}{2}, \frac{1}{2}\right]

B

Range of fogfog is [12,12]\left[-\frac{1}{2}, \frac{1}{2}\right]

C

limx0f(x)g(x)=π6\displaystyle \lim_{x \to 0} \frac{f \left(x\right)}{g\left(x\right)} = \frac{\pi}{6}

D

There is an xRx \in R such that (gof)(x)=1(gof)(x) = 1

Answer

limx0f(x)g(x)=π6\displaystyle \lim_{x \to 0} \frac{f \left(x\right)}{g\left(x\right)} = \frac{\pi}{6}

Explanation

Solution

f(x)=sin(π6sin(π2sinx))f \left(x\right) = sin \left(\frac{\pi}{6}sin\left(\frac{\pi}{2}sin \,x\right)\right)
1sinx1asx?R- 1 \le sin x \le 1 as x ? R
π2π2sinxπ2-\frac{\pi}{2} \le \frac{\pi}{2} sinx \le \frac{\pi}{2}
1sin(π2sinx)1-1 \le sin\left(\frac{\pi}{2}sin\, x\right)\le 1
π6π6sin(π2sinx)π6-\frac{\pi}{6} \le \frac{\pi}{6} sin \left(\frac{\pi}{2}sin\, x\right) \le \frac{\pi}{6}
12sin(π6sin(π2sinx))12-\frac{1}{2}\le sin\left(\frac{\pi}{6}sin\left(\frac{\pi}{2}sin\, x\right)\right) \le \frac{1}{2}
Range ?[12,12]?\left[-\frac{1}{2}, \frac{1}{2}\right]
So option (A)\left(A\right) is correct.
f o g(x)
Range of g(x) =[π2,π2]n= \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] n Domain of f(x) = R
Common =[π2,π2]= \left[-\frac{\pi }{2}, \frac{\pi }{2}\right]
Range of fog(x) = Range of f(x) when input [π2,π2]\left[-\frac{\pi }{2}, \frac{\pi }{2}\right]
=[12,12]= \left[-\frac{1}{2}, \frac{1}{2}\right]
So option (B) is correct
limx0sin(π6sin(π2sinx))π2sinx=limx0(sin(π6sin(π2sinx))π6sin(π2sinx))(π6sin(π2sinx)(π2sinx))\displaystyle \lim_{x\to0} \frac{sin\left(\frac{\pi}{6}sin\left(\frac{\pi}{2}sin\, x\right)\right)}{\frac{\pi}{2}sin\, x} = \displaystyle \lim_{x\to 0} \left(\frac{sin\left(\frac{\pi }{6}sin\left(\frac{\pi }{2}sin\, x\right)\right)}{\frac{\pi }{6}sin\left(\frac{\pi }{2}sin\, x\right)}\right)\left(\frac{\frac{\pi }{6}sin\left(\frac{\pi }{2}sin\, x\right)}{\left(\frac{\pi}{2}sin\, x\right)}\right)
=limx0π6.(1)=π6= \displaystyle \lim_{x\to 0} \frac{\pi}{6}.\left(1\right) = \frac{\pi}{6}
So option (B)\left(B\right) is correct
g o f(x)
Range of f(x) =[12,12]= \left[-\frac{1}{2}, \frac{1}{2}\right]
g o f(x) =π2sinf(x)= \frac{\pi}{2}sin f\left(x\right)
=π2sin(sin(π6sin(π2sinx)))=112to12= \frac{\pi}{2}sin\frac{\left(sin \left(\frac{\pi}{6}sin \left(\frac{\pi}{2} sin \,x\right)\right)\right) = 1}{\frac{1}{2} to \frac{1}{2}}
sin(12to12)=2π0.6379sin\left(\frac{1}{2} to \frac{1}{2}\right) = \frac{2}{\pi}\approx0.6379 (not possible)
1228.5\frac{1}{2} \approx 28.5^{\circ}
So option (D)\left(D\right) is not correct.