Solveeit Logo

Question

Question: Let \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x.\) Then f is an increasing function in the interva...

Let f(x)=sin4x+cos4x.f\left( x \right) = {\sin ^4}x + {\cos ^4}x. Then f is an increasing function in the interval:
a. [5π8, 3π4] b. [π2, 5π8] c. [π4, π2] d. [0, π4]  a.{\text{ }}\left[ {\dfrac{{5\pi }}{8},{\text{ }}\dfrac{{3\pi }}{4}} \right] \\\ b.{\text{ }}\left[ {\dfrac{\pi }{2},{\text{ }}\dfrac{{5\pi }}{8}} \right] \\\ c.{\text{ }}\left[ {\dfrac{\pi }{4},{\text{ }}\dfrac{\pi }{2}} \right] \\\ d.{\text{ }}\left[ {0,{\text{ }}\dfrac{\pi }{4}} \right] \\\

Explanation

Solution

Hint: Check the graph of first derivative of the given function

Given equation is f(x)=sin4x+cos4x.................(1)f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)
We know the function is increasing if its differentiation is greater than or equal to zero.
I.e.f(x)0f'\left( x \right) \geqslant 0 so, differentiate equation 1 w.r.t.xx
f(x)=4sin3xddxsinx+4cos3xddxcosx f(x)=4sin3x(cosx)+4cos3x(sinx) f(x)=4sinxcosx(sin2xcos2x)  \Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\\ \Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\\ \Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\\
As we know2sinxcosx=sin2x2\sin x\cos x = \sin 2x, andcos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x, so apply this
f(x)=2sin2xcos2x=sin4x\Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x
But for increasing function f(x)0f'\left( x \right) \geqslant 0
sin4x0 sin4x0  \Rightarrow - \sin 4x \geqslant 0 \\\ \Rightarrow \sin 4x \leqslant 0 \\\
As we know sinx\sin xis zero at (0, π, 2π),\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),in the interval between [0,2π]\left[ {0,2\pi } \right]

So, in sinx\sin xgraph sinx\sin xis less than or equal to zero in between [π,2π]\left[ {\pi ,2\pi } \right]
4x[π,2π] x[π4,π2]  \Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\\ \Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\\
Hence, option cc is correct.

Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.