Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let f(x)=0xg(t)dtf \left(x\right)= \int\limits_0^{x} g (t) dt , where g is a non-zero even function. If f(x+5)=g(x)f \left(x+5\right)=g\left(x\right), then 0xf(t)dt\int\limits_0^{x}f (t) dt equals-

A

x+55g(t)dt \int\limits^5_{x+5} g (t)\, dt

B

5x+55g(t)dt5 \int\limits^5_{x+5} g (t) \,dt

C

5x+5g(t)dt \int\limits^{x+5}_5 g (t) \,dt

D

25x+5g(t)dt2 \int \limits ^{x+5}_5 g (t) \,dt

Answer

x+55g(t)dt \int\limits^5_{x+5} g (t)\, dt

Explanation

Solution

f(x)=0xg(t)dtf( x )=\int_{0}^{ x } g ( t ) dt
f(x)=0xg(t)dtf(- x )=\int_{0}^{- x } g ( t ) dt
put t=ut =- u
=0xg(u)du=-\int_{0}^{ x } g (- u ) du
=0xg(u)d(u)=f(x)=-\int_{0}^{x} g(u) d(u)=-f(x)
f(x)=f(x)\Rightarrow f(- x )=-f( x )
f(x)\Rightarrow f( x ) is an odd function
Also f(5+x)=g(x)f(5+x)=g(x)