Question
Mathematics Question on Continuity and differentiability
Let f(x)=g(x).e1/x+e−1/xe1/x−e−1/x, where g is a continuous function then x→0limf(x) does not exist if
A
g(x) is any constant function
B
g(x)=x
C
g(x)=x2
D
g(x)=xh(x), where h(x) is a polynomial
Answer
g(x) is any constant function
Explanation
Solution
x→0+lim e1/x+e−1/xe1/x−e−1/x=x→0+lim 1+e−2/x1−e−2/x=1 and x→0−lim e1/x+e−1/xe1/x−e−1/x=x→0−lim e2/x+1e2/x−1=−1. Hence x→0limf(x) exists if x→0limg(x)=0. If g(x)=a=0 (constant) then x→0+limf(x)=a and x→0−limf(x)=−a. Thus x→0limf(x) doesn?? exist in this case. ∴x→0limf(x) exists in case of (b), (c) and (d) each.