Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let f(x)=g(x).e1/xe1/xe1/x+e1/x,f \left(x\right)=g\left(x\right).\frac{e^{1/x}-e^{-1/x}}{e^{1/x}+e^{-1/x}}, where g is a continuous function then limx0f(x)\displaystyle \lim_{x \to 0} f (x) does not exist if

A

g(x)g(x) is any constant function

B

g(x)=xg(x) = x

C

g(x)=x2g(x) = x^2

D

g(x)=xh(x)g(x) = x h (x), where h(x)h(x) is a polynomial

Answer

g(x)g(x) is any constant function

Explanation

Solution

limx0+\displaystyle \lim_{x \to 0^+} e1/xe1/xe1/x+e1/x=limx0+\frac{e^{1/x}-e^{-1/x}}{e^{1/x}+e^{-1/x}}=\displaystyle \lim_{x \to 0^+} 1e2/x1+e2/x=1\frac{1-e^{-2/x}}{1+e^{-2/x}}=1 and limx0\displaystyle \lim_{x \to 0^-} e1/xe1/xe1/x+e1/x=limx0\frac{e^{1/x}-e^{-1/x}}{e^{1/x}+e^{-1/x}}=\displaystyle \lim_{x \to 0^-} e2/x1e2/x+1=1.\frac{e^{2/x}-1}{e^{2/x}+1}=-1. Hence limx0f(x)\displaystyle \lim_{x \to 0} f (x) exists if limx0g(x)=0.\displaystyle \lim_{x \to 0}g(x)=0. If g(x)=a0g(x) = a \ne 0 (constant) then limx0+f(x)=a\displaystyle \lim_{x \to 0^+}f (x)=a and limx0f(x)=a.\displaystyle \lim_{x \to 0^-}f (x)=-a. Thus limx0f(x)\displaystyle \lim_{x \to 0}f(x) doesn?? exist in this case. limx0f(x)\therefore \displaystyle \lim_{x \to 0}f(x) exists in case of (b), (c) and (d) each.