Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let f(x)=log(1+ex)log(1x)x,x0f\left(x\right) = \frac{\log\left(1+ex\right)-\log\left(1-x\right)}{x} , x\ne0 . Then ff is continuous at x=0x = 0 if f(0)f(0) =

A

e1e - 1

B

log(e+1) \log (e +1)

C

log(e1) \log (e - 1)

D

(e+1) (e +1)

Answer

(e+1) (e +1)

Explanation

Solution

f(x)=log(1+ex)log(1x)xf\left(x\right) = \frac{\log\left(1+ex\right)-\log\left(1-x\right)}{x}
It is continuous at x=0x = 0
limx0f(x)=limx0+f(x)=f(0)\therefore \:\:\: \displaystyle\lim_{x\to0^{-}} f\left(x\right) = \displaystyle\lim _{x\to 0^{+}} f\left(x\right) =f\left(0\right)
limx0log(1+ex)log(1x)x\displaystyle\lim _{x\to 0^{-}} \frac{\log\left(1+ex\right) -\log \left(1-x\right) }{x}
=limx0log(1+e(0h))log(1(0h))0h=\displaystyle\lim _{x\to 0^{-}} \frac{\log \left(1+e\left(0-h\right)\right) -\log \left(1-\left(0 -h\right)\right)}{0-h}
=limx0log(1eh)log(1+h)h= \displaystyle\lim _{x\to 0^{-}}\frac{\log \left(1-eh\right)-\log \left(1+h\right)}{-h}
It is continuous at
=limx0(11eh)(e)(11+h)1\frac{=\displaystyle\lim _{x\to 0^{-}} \left(\frac{1}{1-eh} \right)\left(-e\right) -\left(\frac{1}{1+h}\right)}{-1}
=e111e+1= \frac{\frac{-e}{1}-1}{-1} \Rightarrow e+1
f(0)=e+1\therefore \:\:\: f(0) = e + 1