Solveeit Logo

Question

Question: Let \(f\left( x \right)={{e}^{{{\cos }^{-1}}sin\left( x+\dfrac{\pi }{3} \right)}}\) , then A. \(f...

Let f(x)=ecos1sin(x+π3)f\left( x \right)={{e}^{{{\cos }^{-1}}sin\left( x+\dfrac{\pi }{3} \right)}} , then
A. f(8π9)=e5π18f\left( \dfrac{8\pi }{9} \right)={{e}^{\dfrac{5\pi }{18}}}
B. f(8π9)=e13π18f\left( \dfrac{8\pi }{9} \right)={{e}^{\dfrac{13\pi }{18}}}
C. f(7π4)=eπ12f\left( -\dfrac{7\pi }{4} \right)={{e}^{\dfrac{\pi }{12}}}
D. f(7π4)=e11π12f\left( -\dfrac{7\pi }{4} \right)={{e}^{\dfrac{11\pi }{12}}}

Explanation

Solution

Problems of this type can be solved by assuming the entire term in the power of ee to be φ\varphi . We will put 8π9\dfrac{8\pi }{9} and 7π4-\dfrac{7\pi }{4} in place xx and put the corresponding value of φ\varphi in the main equation. Further simplifying the expressions, we will get the values of f(8π9)f\left( \dfrac{8\pi }{9} \right) and f(7π4)f\left( -\dfrac{7\pi }{4} \right) to get which one is the correct option among the given ones.

Complete step-by-step answer:
The given function we have is
f(x)=ecos1sin(x+π3)f\left( x \right)={{e}^{{{\cos }^{-1}}sin\left( x+\dfrac{\pi }{3} \right)}}
For, further simplifying the above function we assume the term cos1sin(x+π3){{\cos }^{-1}}sin\left( x+\dfrac{\pi }{3} \right) as indices of ee to be equal to φ\varphi
φ=cos1sin(x+π3).....(1)\Rightarrow \varphi ={{\cos }^{-1}}sin\left( x+\dfrac{\pi }{3} \right).....\left( 1 \right)
As, we know the formula of inverse trigonometry cos1θ=π2sin1θ{{\cos }^{-1}}\theta =\dfrac{\pi }{2}-{{\sin }^{-1}}\theta in the range of [0,π]\left[ 0,\pi \right]
So, we put 8π9\dfrac{8\pi }{9} in place of xx in the equation (1)\left( 1 \right) and get
φ=cos1sin(8π9+π3).....(2)\Rightarrow \varphi ={{\cos }^{-1}}sin\left( \dfrac{8\pi }{9}+\dfrac{\pi }{3} \right).....\left( 2 \right)
Also, we can write the term 8π9+π3\dfrac{8\pi }{9}+\dfrac{\pi }{3} to be equal to π2+θ\dfrac{\pi }{2}+\theta as
θ+π2=8π9+π3\Rightarrow \theta +\dfrac{\pi }{2}=\dfrac{8\pi }{9}+\dfrac{\pi }{3}
Simplifying the above equation, we get the value of θ\theta as
θ=8π9+π3π2\Rightarrow \theta =\dfrac{8\pi }{9}+\dfrac{\pi }{3}-\dfrac{\pi }{2}
θ=13π18\Rightarrow \theta =\dfrac{13\pi }{18}
We rewrite the equation (2)\left( 2 \right) as
φ=cos1sin(π2+13π18)\Rightarrow \varphi ={{\cos }^{-1}}sin\left( \dfrac{\pi }{2}+\dfrac{13\pi }{18} \right)
As we know that sin(π2+θ)=cosθsin\left( \dfrac{\pi }{2}+\theta \right)=\cos \theta , rewriting the above equation as shown below
φ=cos1cos(13π18)\Rightarrow \varphi ={{\cos }^{-1}}\cos \left( \dfrac{13\pi }{18} \right)
As we know cos1cosθ=θ{{\cos }^{-1}}\cos \theta =\theta in the range of [0,π]\left[ 0,\pi \right] , rewriting the above equation we get
φ=13π18\Rightarrow \varphi =\dfrac{13\pi }{18}
Now, we put the value of φ\varphi in the main function and get
f(8π9)=e13π18\Rightarrow f\left( \dfrac{8\pi }{9} \right)={{e}^{\dfrac{13\pi }{18}}}
Again, putting 7π4-\dfrac{7\pi }{4} in place of xx in equation (1)\left( 1 \right) we get
φ=cos1sin(7π4+π3)\Rightarrow \varphi ={{\cos }^{-1}}sin\left( -\dfrac{7\pi }{4}+\dfrac{\pi }{3} \right)
\Rightarrow \varphi ={{\cos }^{-1}}\left\\{ -sin\left( \dfrac{17\pi }{12} \right) \right\\}.....\left( 3 \right)
Also, we can rewrite the term 17π12\dfrac{17\pi }{12} as π2+11π12\dfrac{\pi }{2}+\dfrac{11\pi }{12} in equation (3)\left( 3 \right)
\Rightarrow \varphi ={{\cos }^{-1}}\left\\{ -sin\left( \dfrac{\pi }{2}+\dfrac{11\pi }{12} \right) \right\\}
We rewrite the above equation as
\Rightarrow \varphi ={{\cos }^{-1}}\left\\{ -\cos \left( \dfrac{11\pi }{12} \right) \right\\}
Rewriting the above equation also as
\Rightarrow \varphi ={{\cos }^{-1}}\left\\{ -\cos \left( \pi -\dfrac{\pi }{12} \right) \right\\}
We know cos(πθ)=cosθ\cos \left( \pi -\theta \right)=-\cos \theta
Hence, \varphi ={{\cos }^{-1}}\left\\{ \cos \left( \dfrac{\pi }{12} \right) \right\\}
φ=π12\Rightarrow \varphi =\dfrac{\pi }{12}
Now, we put the value of φ\varphi in the main function and get
f(7π4)=eπ12\Rightarrow f\left( -\dfrac{7\pi }{4} \right)={{e}^{\dfrac{\pi }{12}}}
Therefore, we conclude that both the options (B) and (C) are correct.

Note: While doing the conversions of inverse trigonometric functions we must be very careful about the range and the domains of the function as they vary with each other. Also, we must be careful about the ++ and - signs to avoid silly mistakes.