Solveeit Logo

Question

Question: Let \(f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left...

Let f(x)=1x(1+1x)1xcos(1x1)f\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}\cos \left( \dfrac{1}{x-1} \right) for x1x\ne 1, then
[a] limx1f(x)=0\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0
[b] limx1f(x)\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right) does not exist
[c] limx1+f(x)=0\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=0
[d] limx1+f(x)\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right) does not exist.

Explanation

Solution

Hint:Use the fact that for x<0 |x| = -x and for x>0 |x| = x ad at x = 0, |x| = 0. Use the property limx1g(x)cos(1x1)\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right) exists if and only if limx1g(x)=0\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0 and
use limxaf(x)=limh0f(ah)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right) and limxa+f(x)=limh0f(a+h)\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right).

Complete step-by-step answer:
Observe that
limx1f(x)\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right) exists if and only if limx11x(1+1x)1x\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|} equals 0 and limx1+f(x)\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right) exists if and only if limx1+1x(1+1x)1x\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|} equals 0. Using these properties evaluate limx11x(1+1x)1x\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|} and limx1+1x(1+1x)1x\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|} and hence find whether limx1f(x)\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right) and limx1+f(x)\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right) exist or not

Here g(x)=1x(1+1x)1xg\left( x \right)=\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|} and f(x)=g(x)cos(1x1)f\left( x \right)=g(x)\cos \left( \dfrac{1}{x-1} \right).
We have LHL =limx1g(x)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,g\left( x \right)
Using limxaf(x)=limh0f(ah)\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right), we get
LHL =limh01(1h)(1+h)h=limh01(1h)(1+h)h=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+\left| -h \right| \right)}{\left| -h \right|}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-h \right)\left( 1+h \right)}{h}
Using (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}, we get
LHL =limh01(1h2)h=limh0h=0=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1-{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,-h=0
RHL =limx1+1x(1+1x)1x=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{1-x\left( 1+\left| 1-x \right| \right)}{\left| 1-x \right|}
Using limxa+f(x)=limh0f(a+h)\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right), we get
RHL =limh01(1+h)(1+h)h=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+h \right)\left( 1+\left| h \right| \right)}{\left| h \right|}
Using (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}, we get
RHL =limh01(1+2h+h2)h=limh0112hh2h=limh02hh2h=limh0(2h)=2=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( 1+2h+{{h}^{2}} \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-1-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-2h-{{h}^{2}}}{h}=\underset{h\to 0}{\mathop{\lim }}\,\left( -2-h \right)=-2
Since LHLRHL\text{LHL}\ne \text{RHL}we have the limit of g(x) does not exist at x = 1.
Hence the limit of f(x) does not exist at 1.
Also since LHL of g(x) = 0, we have LHL of f(x) = 0 at x=1.
Hence limx1f(x)=0\underset{x\to 1-}{\mathop{\lim }}\,f\left( x \right)=0.
Hence option [a] is correct.
Since the RHL of g(x) is non-zero, the RHL of f(x) does not exist at x = 1. Hence option [d] is correct.
Hene options [a] and [d] are correct.

Note: [1] A limit of a function is said to be defined if and only if the Left-Hand Limit (LHL) is equal to the Right-Hand Limit(RHL),i.e. limit exists if and only if LHL = RHL.
[2] limx1g(x)cos(1x1)\underset{x\to 1}{\mathop{\lim }}\,g(x)\cos \left( \dfrac{1}{x-1} \right) exists if and only if limx1g(x)=0\underset{x\to 1}{\mathop{\lim }}\,g\left( x \right)=0
This is true because if the LHL or RHL of g(x) comes out to be non-zero, then the LHL or RHL of g(x)cos(1x1)g(x)\cos \left( \dfrac{1}{x-1} \right) will fail to exist as the latter quantity will be an oscillatory quantity. Hence either LHL or RHL will fail to exist, and hence the limit of the whole function will not exist.