Solveeit Logo

Question

Question: Let \(f\left( x \right)\) be a polynomial of degree 4 having extreme values at x = 1 and x = 2 if \(...

Let f(x)f\left( x \right) be a polynomial of degree 4 having extreme values at x = 1 and x = 2 if limx0[f(x)x2+1]=3\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3, then f(1)f\left( -1 \right) is equal to
a.12 b.32 c.52 d.92 \begin{aligned} & a.\dfrac{1}{2} \\\ & b.\dfrac{3}{2} \\\ & c.\dfrac{5}{2} \\\ & d.\dfrac{9}{2} \\\ \end{aligned}

Explanation

Solution

First we need to write the four degree polynomial, f(x)=ax4+bx3+cx2+dx+e=0f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0 and use the condition of any function which has extreme values at the critical points has f(x)=0f'\left( x \right)=0. Also, use the limit rules and subtraction operation between the obtained equations in order to find the values of a and b, and finally substitute x = -1 in the obtained f(x)f\left( x \right) to get the required result.

Complete step by step answer:
We know that any function which has extreme values, that are maximum and minimum at the critical points, then we can say that f(x)=0f'\left( x \right)=0. From the question, we can say that the function has extreme values at x = and x = 2.
Therefore, for f(x)=0f'\left( x \right)=0 at x = 1 and at x = 2, we can say that,
f(1)=0f'\left( 1 \right)=0 and f(2)=0f'\left( 2 \right)=0
It is given that the polynomial f(x)f\left( x \right) has a degree of four.
Therefore, f(x)f\left( x \right) will be ax4+bx3+cx2+dx+e=0a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0.
Hence, f(x)=ax4+bx3+cx2+dx+e=0.........(i)f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e=0.........(i)
We also have,
limx0[f(x)x2+1]=3\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x \right)}{{{x}^{2}}}+1 \right]=3
We know that limx0k=k\underset{x\to 0}{\mathop{\lim }}\,k=k, therefore, we can write,
limx0f(x)x2+limx01=3 limx0f(x)x2+1=3 limx0f(x)x2=31 limx0f(x)x2=2 \begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+\underset{x\to 0}{\mathop{\lim }}\,1=3 \\\ & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}+1=3 \\\ & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=3-1 \\\ & \underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{{{x}^{2}}}=2 \\\ \end{aligned}
If we take the entire f(x)f\left( x \right) and divide it by x2{{x}^{2}}, we get,
f(x)=ax2+bx+c+dx+ex2=0f\left( x \right)=a{{x}^{2}}+bx+c+\dfrac{d}{x}+\dfrac{e}{{{x}^{2}}}=0
In the above expression, if we apply the limits, we will get a not defined result. Hence, we will only consider,
f(x)=ax2+bx+cf\left( x \right)=a{{x}^{2}}+bx+c
Therefore, we can say that, d = 0 and e = 0 for the limit value to be finite.
Now,
limx0f(x)=limx0[ax2+bx+c] =a(0)+b(0)+c \begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left[ a{{x}^{2}}+bx+c \right] \\\ & =a\left( 0 \right)+b\left( 0 \right)+c \\\ \end{aligned}
We know that,
limx0f(x)=2 c=2 \begin{aligned} & \underset{x\to 0}{\mathop{\lim }}\,f\left( x \right)=2 \\\ & c=2 \\\ \end{aligned}
Let us substitute the values d = 0, e = 0 and c = 2 in equation (i), so we get,
f(x)=ax4+bx3+2x2f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}
Differentiating the above expression with respect to x, we get,
f(x)=4ax3+3bx2+4xf'\left( x \right)=4a{{x}^{3}}+3b{{x}^{2}}+4x
We have,
f(1)=0f'\left( 1 \right)=0
So, we can write,
f(1)=4a(1)3+3b(1)2+4(1)=0 4a+3b+4=0.........(ii) \begin{aligned} & f'\left( 1 \right)=4a{{\left( 1 \right)}^{3}}+3b{{\left( 1 \right)}^{2}}+4\left( 1 \right)=0 \\\ & \Rightarrow 4a+3b+4=0.........(ii) \\\ \end{aligned}
Also, we know that,
f(2)=0f'\left( 2 \right)=0
So, we can write,
f(2)=4a(2)3+3b(2)2+4(2)=0 32a+12b+8=0.........(iii) \begin{aligned} & f'\left( 2 \right)=4a{{\left( 2 \right)}^{3}}+3b{{\left( 2 \right)}^{2}}+4\left( 2 \right)=0 \\\ & \Rightarrow 32a+12b+8=0.........(iii) \\\ \end{aligned}
Let us solve equations (ii) and (iii). So, we have,
4a+3b+4=0 32a+12b+8=0 \begin{aligned} & 4a+3b+4=0 \\\ & 32a+12b+8=0 \\\ \end{aligned}
We will subtract the above equations, to get the value of a and b.
So, we will first divide equation (iii) by 4 throughout, so we get,
8a+3b+2=0.........(iv)8a+3b+2=0.........(iv)
Now, we will subtract equation (2) from equation (iv), so we get,
(8a+3b+2)(4a+3b+4)=0 8a+3b+24a3b4=0 4a2=0 4a=2 a=24 a=12 \begin{aligned} & \left( 8a+3b+2 \right)-\left( 4a+3b+4 \right)=0 \\\ & 8a+3b+2-4a-3b-4=0 \\\ & 4a-2=0 \\\ & 4a=2 \\\ & a=\dfrac{2}{4} \\\ & a=\dfrac{1}{2} \\\ \end{aligned}
On substituting a=12a=\dfrac{1}{2} in equation (ii), we get,
4(12)+3b+4=0 2+3b+4=0 3b+6=0 3b=6 b=63 b=2 \begin{aligned} & 4\left( \dfrac{1}{2} \right)+3b+4=0 \\\ & 2+3b+4=0 \\\ & 3b+6=0 \\\ & 3b=-6 \\\ & b=-\dfrac{6}{3} \\\ & b=-2 \\\ \end{aligned}
Now, let us substitute a=12,b=2a=\dfrac{1}{2},b=-2 in f(x)=ax4+bx3+2x2f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+2{{x}^{2}}, so we will get,
f(x)=12x4+(2)bx3+2x2 =x422bx3+2x2 \begin{aligned} & f\left( x \right)=\dfrac{1}{2}{{x}^{4}}+\left( -2 \right)b{{x}^{3}}+2{{x}^{2}} \\\ & =\dfrac{{{x}^{4}}}{2}-2b{{x}^{3}}+2{{x}^{2}} \\\ \end{aligned}
We need the value of f(1)f\left( -1 \right), therefore, substitute the value x = -1 in the above equation. So, we get,
f(1)=(1)422(1)3+2(1)2 =122(1)+2(1) =12+2+2 =12+4 =1+82 =92 \begin{aligned} & f\left( -1 \right)=\dfrac{{{\left( -1 \right)}^{4}}}{2}-2{{\left( -1 \right)}^{3}}+2{{\left( -1 \right)}^{2}} \\\ & =\dfrac{1}{2}-2\left( -1 \right)+2\left( 1 \right) \\\ & =\dfrac{1}{2}+2+2 \\\ & =\dfrac{1}{2}+4 \\\ & =\dfrac{1+8}{2} \\\ & =\dfrac{9}{2} \\\ \end{aligned}
Therefore, the value of f(1)=92f\left( -1 \right)=\dfrac{9}{2}.

So, the correct answer is “Option D”.

Note: In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential in calculus and are used to define continuity, derivatives and integrals.