Solveeit Logo

Question

Question: Let \(f\left( x \right)=3x-7\) and \(g\left( x \right)=-2x-6\), then how do you find the value of \(...

Let f(x)=3x7f\left( x \right)=3x-7 and g(x)=2x6g\left( x \right)=-2x-6, then how do you find the value of (fg)(4)\left( f\circ g \right)\left( 4 \right)?

Explanation

Solution

We start solving the problem by using the fact that (fg)(x)=f(g(x))\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right) to proceed finding the composite function (fg)(x)\left( f\circ g \right)\left( x \right). We then make the necessary calculations to find the function (fg)(x)\left( f\circ g \right)\left( x \right). We then substitute x=4x=4 in the obtained composite function (fg)(x)\left( f\circ g \right)\left( x \right) to proceed through the problem. We then make the necessary calculations to get the required value of (fg)(4)\left( f\circ g \right)\left( 4 \right).

Complete step by step answer:
According to the problem, we are given f(x)=3x7f\left( x \right)=3x-7 and g(x)=2x6g\left( x \right)=-2x-6. We need to find the value of (fg)(4)\left( f\circ g \right)\left( 4 \right).
Let us first find the composite function (fg)(x)\left( f\circ g \right)\left( x \right).
We know that (fg)(x)=f(g(x))\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right).
So, we have (fg)(x)=3(g(x))7\left( f\circ g \right)\left( x \right)=3\left( g\left( x \right) \right)-7 ---(1).
Let us substitute g(x)=2x6g\left( x \right)=-2x-6 in equation (1).
(fg)(x)=3(2x6)7\Rightarrow \left( f\circ g \right)\left( x \right)=3\left( -2x-6 \right)-7.
(fg)(x)=6x187\Rightarrow \left( f\circ g \right)\left( x \right)=-6x-18-7.
(fg)(x)=6x25\Rightarrow \left( f\circ g \right)\left( x \right)=-6x-25 ---(2).
Now, let us substitute x=4x=4 in equation (2) to find the value of (fg)(4)\left( f\circ g \right)\left( 4 \right).
(fg)(4)=6(4)25\Rightarrow \left( f\circ g \right)\left( 4 \right)=-6\left( 4 \right)-25.
(fg)(4)=2425\Rightarrow \left( f\circ g \right)\left( 4 \right)=-24-25.
(fg)(4)=49\Rightarrow \left( f\circ g \right)\left( 4 \right)=-49.
So, we have found the value of (fg)(4)\left( f\circ g \right)\left( 4 \right) as –49.
\therefore The required value of (fg)(4)\left( f\circ g \right)\left( 4 \right) is –49.

Note:
We should not confuse (fg)(x)\left( f\circ g \right)\left( x \right) with g(f(x))g\left( f\left( x \right) \right) instead of f(g(x))f\left( g\left( x \right) \right), which is the common mistake done by students. We should not make calculation mistakes while solving for the composite function (fg)(x)\left( f\circ g \right)\left( x \right) as it makes us get the wrong value of (fg)(4)\left( f\circ g \right)\left( 4 \right). We can also solve the given problems as shown below:
We know that (fg)(x)=f(g(x))\left( f\circ g \right)\left( x \right)=f\left( g\left( x \right) \right).
So, we have (fg)(4)=f(g(4))\left( f\circ g \right)\left( 4 \right)=f\left( g\left( 4 \right) \right) ---(3).
Now, let us find the value of g(4)g\left( 4 \right).
So, we have g(4)=2(4)6g\left( 4 \right)=-2\left( 4 \right)-6.
g(4)=86\Rightarrow g\left( 4 \right)=-8-6.
g(4)=14\Rightarrow g\left( 4 \right)=-14 ---(4).
Let us substitute equation (4) in equation (3).
(fg)(4)=f(14)\Rightarrow \left( f\circ g \right)\left( 4 \right)=f\left( -14 \right).
(fg)(4)=3(14)7\Rightarrow \left( f\circ g \right)\left( 4 \right)=3\left( -14 \right)-7.
(fg)(4)=427\Rightarrow \left( f\circ g \right)\left( 4 \right)=-42-7.
(fg)(4)=49\Rightarrow \left( f\circ g \right)\left( 4 \right)=-49.
So, the value of (fg)(4)\left( f\circ g \right)\left( 4 \right) is –49.