Solveeit Logo

Question

Question: Let \(f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\...

Let f(θ)=sin(tan1(sinθcos2θ))f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right)} \right), where π4<θ<π4\dfrac{{ - \pi }}{4} < \theta < \dfrac{\pi }{4}. Then the value of dd(tanθ)(f(θ))\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right) is
A) 1
B) 2
C) 3
D) 4

Explanation

Solution

First of all we have to solve the function f(θ)f\left( \theta \right) by assuming tan1(sinθcos2θ)=y{\tan ^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right) = y
Use the Pythagoras theorem to find out the necessary trigonometric ratios.

Complete step-by-step answer:
Given, f(θ)=sin(tan1(sinθcos2θ))f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right)} \right)
Let tan1(sinθcos2θ)=y{\tan ^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }}} \right) = y
tany=sinθcos2θ\Rightarrow \tan y = \dfrac{{\sin \theta }}{{\sqrt {\cos 2\theta } }} ….(1)
Now, f(θ)=sinyf\left( \theta \right) = \sin y ….(2)
Substitute cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1 in above equation (1),
tany=sinθ2cos2θ1=PerpendicularBase\Rightarrow \tan y = \dfrac{{\sin \theta }}{{\sqrt {2{{\cos }^2}\theta - 1} }} = \dfrac{{Perpendicular}}{{Base}}
On applying Pythagoras Theorem,
(Hypotaneous)2=(Perpendicular)2+(Base)2{\left( {Hypo\tan eous} \right)^2} = {\left( {Perpendicular} \right)^2} + {\left( {Base} \right)^2}
(Hypotaneous)2=(sinθ)2+(2cos2θ1)2 (Hypotaneous)2=sin2θ+2cos2θ1 (Hypotaneous)2=(sin2θ+cos2θ)+cos2θ1  {\left( {Hypo\tan eous} \right)^2} = {\left( {\sin \theta } \right)^2} + {\left( {\sqrt {2{{\cos }^2}\theta - 1} } \right)^2} \\\ {\left( {Hypo\tan eous} \right)^2} = {\sin ^2}\theta + 2{\cos ^2}\theta - 1 \\\ {\left( {Hypo\tan eous} \right)^2} = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {\cos ^2}\theta - 1 \\\
On putting the value of sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 in above equation, we get,(Hypotaneous)2=1+cos2θ1  {\left( {Hypo\tan eous} \right)^2} = 1 + {\cos ^2}\theta - 1 \\\

(Hypotaneous)2=cos2θ  {\left( {Hypo\tan eous} \right)^2} = {\cos ^2}\theta \\\ Hypotaneous=cos2θ Hypotaneous=cosθ  Hypo\tan eous = \sqrt {{{\cos }^2}\theta } \\\ Hypo\tan eous = \cos \theta \\\

We know that,
siny=PerpendicularHypotaneous\sin y = \dfrac{{Perpendicular}}{{Hypo\tan eous}} siny=sinθcosθ \Rightarrow \sin y = \dfrac{{\sin \theta }}{{\cos \theta }}
siny=sinθcosθ\Rightarrow \sin y = \dfrac{{\sin \theta }}{{\cos \theta }} siny=tanθ\Rightarrow \sin y = \tan \theta
siny=tanθ\Rightarrow \sin y = \tan \theta
On putting the value of siny\sin y in equation (2), we get
f(θ)=tanθf\left( \theta \right) = \tan \theta
Now, dd(tanθ)(f(θ))\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)= dd(tanθ)(tanθ)\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {\tan \theta } \right)
\Rightarrow dd(tanθ)(f(θ))\dfrac{d}{{d\left( {\tan \theta } \right)}}\left( {f\left( \theta \right)} \right)= 1

Hence, option (A) is the correct answer.

Note: cos2θ\cos 2\theta has three formulae i.e., cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta = 2{\cos ^2}\theta - 1 = 1 - 2{\sin ^2}\theta . Here, we use cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1, but we can also use the rest two i.e., cos2θsin2θ{\cos ^2}\theta - {\sin ^2}\theta or 2cos2θ12{\cos ^2}\theta - 1.