Question
Question: Let \(f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {\...
Let f(θ)=sin(tan−1(cos2θsinθ)), where 4−π<θ<4π. Then the value of d(tanθ)d(f(θ)) is
A) 1
B) 2
C) 3
D) 4
Solution
First of all we have to solve the function f(θ) by assuming tan−1(cos2θsinθ)=y
Use the Pythagoras theorem to find out the necessary trigonometric ratios.
Complete step-by-step answer:
Given, f(θ)=sin(tan−1(cos2θsinθ))
Let tan−1(cos2θsinθ)=y
⇒tany=cos2θsinθ ….(1)
Now, f(θ)=siny ….(2)
Substitute cos2θ=2cos2θ−1 in above equation (1),
⇒tany=2cos2θ−1sinθ=BasePerpendicular
On applying Pythagoras Theorem,
(Hypotaneous)2=(Perpendicular)2+(Base)2
(Hypotaneous)2=(sinθ)2+(2cos2θ−1)2 (Hypotaneous)2=sin2θ+2cos2θ−1 (Hypotaneous)2=(sin2θ+cos2θ)+cos2θ−1
On putting the value of sin2θ+cos2θ=1 in above equation, we get,(Hypotaneous)2=1+cos2θ−1
We know that,
siny=HypotaneousPerpendicular ⇒siny=cosθsinθ
⇒siny=cosθsinθ ⇒siny=tanθ
⇒siny=tanθ
On putting the value of siny in equation (2), we get
f(θ)=tanθ
Now, d(tanθ)d(f(θ))= d(tanθ)d(tanθ)
⇒ d(tanθ)d(f(θ))= 1
Hence, option (A) is the correct answer.
Note: cos2θ has three formulae i.e., cos2θ=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ. Here, we use cos2θ=2cos2θ−1, but we can also use the rest two i.e., cos2θ−sin2θ or 2cos2θ−1.