Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f(n)=[13+3n100]n,f\left(n\right) = \left[\frac{1}{3} + \frac{3n}{100}\right]{n}, where [n]\left[n\right] denotes the greatest integer less than or equal to n. Then n=156Δrf(n)\sum\limits^{56}_{n = 1} \Delta_{r} f\left(n\right) is equal to :

A

56

B

689

C

1287

D

1399

Answer

1399

Explanation

Solution

n=156f(x)=[13+3×1100]×1+..+[13+3×22100]×22\displaystyle\sum_{n=1}^{56} f(x)=\left[\frac{1}{3}+\frac{3 \times 1}{100}\right] \times 1+\ldots . .+\left[\frac{1}{3}+\frac{3 \times 22}{100}\right] \times 22
+[13+3×23100]×23+\left[\frac{1}{3}+\frac{3 \times 23}{100}\right] \times 23 ........ + .........
[13+3×55100]×55+[13+3×56100]×56{\left[\frac{1}{3}+\frac{3 \times 55}{100}\right] \times 55+\left[\frac{1}{3}+\frac{3 \times 56}{100}\right] \times 56}
=0+..+0+23+24+.+55+2×56=0+\ldots \ldots . .+0+23+24+\ldots \ldots .+55+2 \times 56
=55(56)222(23)2+112=\frac{55(56)}{2}-\frac{22(23)}{2}+112
=11(5×2823)+112=11(5 \times 28-23)+112
=11×117+112=11 \times 117+112
=1287+112=1287+112
=1399=1399