Question
Question: Let f \(\left( \frac{x + y}{2} \right)\)= \(\frac{f(x) + f(y)}{2}\)for real values of x and y. If f...
Let f (2x+y)= 2f(x)+f(y)for real values of x and y.
If f ′(0) exist and equals –1 and f(0) = 1, then f ′(2) is equal to-
A
–1
B
Non-existent
C
21
D
12
Answer
–1
Explanation
Solution
We have,
f (2x+y)= 2f(x)+f(y) for all x, y, ∈ R …(i)
f (2x)= 2f(1)+1 for all x, y ∈ R
⇒f(x) = 2f (2x)– 1 for all x, y ∈ R .....(ii)
Now, f '(2) = limh→0hf(2+h)−f(2)
⇒f ′(2) = limh→0 hf(24+2h)−f(2)
⇒f ′(2) = limh→0 2h2f(2)−1+2f(h)−1−2f(2)
[Putting x = 4 and 2h respectively in Eq. (ii)]
⇒ f ′(2) = limh→0 hf(h)−1
f ′(2) = limh→0 hf(h)−f(0)= f '(0) = –1