Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

Let f:[π2,π2]Rf : \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow \mathbb{R} be a differentiable function such that f(0)=12f(0) = \frac{1}{2}. If the limx00xf(t)dtex21=α\lim_{x \to 0} \frac{\int_{0}^{x} f(t) \, dt}{e^{x^2} - 1} = \alpha, then 8α28\alpha^2 is equal to:

A

16

B

2

C

1

D

4

Answer

2

Explanation

Solution

Solution: Rewrite the limit as follows:

limx00xf(t)dtex21=limx0(0xf(t)dtx×xex21)\lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{e^{x^2} - 1} = \lim_{x \to 0} \left( \frac{\int_0^x f(t) \, dt}{x} \times \frac{x}{e^{x^2} - 1} \right)

Evaluate each part separately:

For the first part, use L'Hôpital's Rule:

limx00xf(t)dtx=limx0f(x)=f(0)=12\lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x} = \lim_{x \to 0} f(x) = f(0) = \frac{1}{2}

For the second part, apply the Taylor series expansion ex21+x2e^{x^2} \approx 1 + x^2 near x=0x = 0:

limx0xex21=limx0xx2=limx01x=1\lim_{x \to 0} \frac{x}{e^{x^2} - 1} = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = 1

So, α=12\alpha = \frac{1}{2}. Then,

8α2=8×(12)2=28\alpha^2 = 8 \times \left( \frac{1}{2} \right)^2 = 2