Question
Question: Let \[f\left( \beta \right) = \mathop {\lim }\limits_{\alpha \to \beta } \dfrac{{{{\sin }^2}\alpha -...
Let f(β)=α→βlimα2−β2sin2α−sin2β , then f(4π) is greater than-
A. x→∞limxsin2x1−cos3x
B. x→∞lim(π−2x)3cotx−cosx
C. x→∞lim(cosx+1−cosx)
D. x→alim3a+x−2xa+2x−3x where a>0
Solution
To solve the question given above, we will be using the L’hospital rule. This rule is used to perform differentiation in limits. According to L’hospital rule, x→αlimg(x)f(x)=x→αlimg′(x)f′(x) . To solve the above question and questions similar to it, this rule is the most important. You also need to remember the differentiation of trigonometric functions.
Formula used:
L’hospital rule, x→αlimg(x)f(x)=x→αlimg′(x)f′(x) .
(cosa−cosb=−2sin2a+bsin2a−b)
Complete step by step solution:
We are given: f(β)=x→∞limα2−β2sin2α−sin2β
Now we can see that this limit is of 00 form. So, to solve this question, we will use the L’hospital rule.
According to L’hospital rule, x→αlimg(x)f(x)=x→αlimg′(x)f′(x) . Using this, we get,
α→βlim2α−02sinαcosα−0
⇒α→βlimαsinαcosα .
On solving the limit, we get: βsinβcosβ
Now, we have to find the value of f(4π) .
Put β=4π ,
4πsin4πcos4π ,
In the next step we will equate the values sin4π=21 and cos4π=21 .
We get,
⇒π2 .
Now, we have to find the option from which this value will be greater.
First, we will find the exact value of π2 . We get, π2=0.636 .
Now, we will check for the first option.
x→∞limxsin2x1−cos3x
This is again of 00 form. So, we will apply L’hospital rule.
We get,
x→0lim2xcos2x+sin2x3cos2xsinx
This is again of 00 form. So, we will again apply the L'hospital rule.
x→0lim2cos2x+2cos2x−(4sin2x)x3cos2xcosx+6cos2x(−sinx)
On evaluating the limit, we get,
\dfrac{1}{6}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2\cos ecx\left( { - \cos ecx\cot x} \right) + \cos x}}{{2\left( {\pi - 2x} \right)\left( { - 2} \right)}} \\
\Rightarrow \dfrac{1}{{ - 24}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 2\cos e{c^2}x\cot x + \cos x}}{{\left( {\pi - 2x} \right)}} \\
\dfrac{{ - 1}}{{24}} \times \dfrac{1}{2} \\
\Rightarrow \dfrac{{ - 1}}{{48}} \\
\Rightarrow \dfrac{1}{{\sqrt 3 }}\dfrac{{\dfrac{{ - 1}}{2}}}{{\dfrac{{ - 3}}{4}}} \\
\Rightarrow \dfrac{1}{{\sqrt 3 }}\dfrac{2}{3} \\
\Rightarrow \dfrac{2}{{3\sqrt 3 }} \\