Solveeit Logo

Question

Question: Let \(f:\left[ -1,2 \right]\to \left[ 0,\infty \right)\) be a continuous function such that \(f\left...

Let f:[1,2][0,)f:\left[ -1,2 \right]\to \left[ 0,\infty \right) be a continuous function such that f(x)=f(1x)f\left( x \right)=f\left( 1-x \right) for all x[1,2]x\in \left[ -1,2 \right]. Let R1=12xf(x)dx{{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx} and R2{{R}_{2}} be the area of the region bounded by y=f(x)y=f\left( x \right), x=1x=-1, x=2x=2 and the X-axis. Then
A. R1=2R2{{R}_{1}}=2{{R}_{2}}
B. R1=3R2{{R}_{1}}=3{{R}_{2}}
C. 2R1=R22{{R}_{1}}={{R}_{2}}
D. 3R1=R23{{R}_{1}}={{R}_{2}}

Explanation

Solution

We try to form the integration for the area of R2{{R}_{2}}. Then we change the variable for the function R1=12xf(x)dx{{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}. We use different theorems of definite integral like abf(x)dx=baf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx} and abf(x)dx=abf(z)dz\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}. We change the function using f(x)=f(1x)f\left( x \right)=f\left( 1-x \right) and find the relation between the R1{{R}_{1}} and R2{{R}_{2}}.

Complete step by step solution:
It is given that R2{{R}_{2}} be the area of the region bounded by y=f(x)y=f\left( x \right), x=1x=-1, x=2x=2 and the X-axis. We can express it in the form of integration of area under the curve.
So, R2=12f(x)dx{{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}.
It’s also given that R1=12xf(x)dx{{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}.
We need to find the relation between the R1{{R}_{1}} and R2{{R}_{2}}.
We now change the variable of the integration R1=12xf(x)dx{{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx} with the relation where x=1zx=1-z.
We take partial differentiation of the relation x=1zx=1-z. So, dx=dzdx=-dz.
The upper and lower limit changes with the relation

x-12
z=1xz=1-x2-1

Now we replace the values to get R1=12xf(x)dx=21(1z)f(1z)(dz){{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}.
We now use the theorems of definite integral where abf(x)dx=baf(x)dx\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx} and abf(x)dx=abf(z)dz\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}.
Therefore, R1=21(1z)f(1z)(dz)=12(1z)f(1z)dz{{R}_{1}}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}.
Now we break the functions as R1=12(1z)f(1z)dz=12f(1z)dz12zf(1z)dz{{R}_{1}}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}.
We use the theorem abf(x)dx=abf(z)dz\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}.
So, R1=12f(1z)dz12zf(1z)dz=12f(1x)dx12xf(1x)dx{{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}.
It’s also given that f(x)=f(1x)f\left( x \right)=f\left( 1-x \right) which gives
R1=12f(1x)dx12xf(1x)dx=12f(x)dx12xf(x)dx{{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}
We replace the values with R1=12xf(x)dx{{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx} and R2=12f(x)dx{{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}.
R1=12f(x)dx12xf(x)dx=R2R1{{R}_{1}}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}={{R}_{2}}-{{R}_{1}}.
Simplifying we get 2R1=R22{{R}_{1}}={{R}_{2}}. The correct option is C.

Note: We need to remember that the transformation from R1{{R}_{1}} to R2{{R}_{2}} can also be done inversely. The relation between the variables will remain the same. If a function is strictly positive, the area between it and the X-axis is simply the definite integral.