Solveeit Logo

Question

Question: Let \[f:\left[ {0:2} \right] \to R\] be a function which is continuous on \[\left[ {0,2} \right]\]an...

Let f:[0:2]Rf:\left[ {0:2} \right] \to R be a function which is continuous on [0,2]\left[ {0,2} \right]and is differentiable on (0,2)\left( {0,2} \right) with f(0)=1f\left( 0 \right) = 1.
Let F(x)=0x2f(t)dtF\left( x \right) = \int\limits_0^{{x^2}} {f\left( {\sqrt t } \right)dt} for x[0,2]x \in \left[ {0,2} \right]. If F(x)=f(x)F'\left( x \right) = f'\left( x \right) for all x(0,2)x \in \left( {0,2} \right), then F(2)F\left( 2 \right) equals:
A. e21{e^2} - 1
B. e41{e^4} - 1
C. e1e - 1
D. e4{e^4}

Explanation

Solution

In this problem we first use the given data to find the expression of f(x)f\left( x \right) by integration and using the data F(x)=f(x)F'\left( x \right) = f'\left( x \right) and then we find the value of cc. Then find the expression of F(x)F\left( x \right) and substitute x=2x = 2 to get the required solution.

Complete step-by-step answer:
Given that F(x)=0x2f(t)dtF\left( x \right) = \int\limits_0^{{x^2}} {f\left( {\sqrt t } \right)dt} for x[0,2]x \in \left[ {0,2} \right]
Since the function f(x)f\left( x \right) is continuous on [0,2]\left[ {0,2} \right] and is differentiable on(0,2)\left( {0,2} \right) differentiating the above expression w.r.t xx we have

ddx(F(x))=ddx(0x2f(t)dt) F(x)=f(x2)ddx(x2)f(0)ddx(0) F(x)=f(x)(2x)f(0)×0  \Rightarrow \dfrac{d}{{dx}}\left( {F\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {\int\limits_0^{{x^2}} {f\left( {\sqrt t } \right)dt} } \right) \\\ \Rightarrow F'\left( x \right) = f\left( {\sqrt {{x^2}} } \right)\dfrac{d}{{dx}}\left( {{x^2}} \right) - f\left( 0 \right)\dfrac{d}{{dx}}\left( 0 \right) \\\ \Rightarrow F'\left( x \right) = f\left( {\left| x \right|} \right)\left( {2x} \right) - f\left( 0 \right) \times 0 \\\

Since x[0,2]x \in \left[ {0,2} \right],x\left| x \right|=xx then

F(x)=f(x)(2x)f(0)×0 F(x)=2f(x)x  \Rightarrow F'\left( x \right) = f\left( x \right)\left( {2x} \right) - f\left( 0 \right) \times 0 \\\ \Rightarrow F'\left( x \right) = 2f\left( x \right)x \\\

We are provided that F(x)=f(x)F'\left( x \right) = f'\left( x \right) then

F(x)=f(x)=2f(x)x f(x)f(x)=2x  \Rightarrow F'\left( x \right) = f'\left( x \right) = 2f\left( x \right)x \\\ \Rightarrow \dfrac{{f'\left( x \right)}}{{f\left( x \right)}} = 2x \\\

On integrating the above expression, we get

f(x)f(x)dx=2xdx log(f(x))=2(x22)+c log(f(x))=x2+c  \Rightarrow \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \int {2x} dx \\\ \Rightarrow \log \left( {f\left( x \right)} \right) = 2\left( {\dfrac{{{x^2}}}{2}} \right) + c \\\ \Rightarrow \log \left( {f\left( x \right)} \right) = {x^2} + c \\\

We have f(0)=1f\left( 0 \right) = 1 so we will proceed by putting x=0x = 0 then above expression becomes

log(f(0))=(0)2+c log(1)=c c=0  \Rightarrow \log \left( {f\left( 0 \right)} \right) = {\left( 0 \right)^2} + c \\\ \Rightarrow \log \left( 1 \right) = c \\\ \therefore c = 0 \\\

Then the expression becomes

log(f(x))=x2 f(x)=ex2  \Rightarrow \log \left( {f\left( x \right)} \right) = {x^2} \\\ \therefore f\left( x \right) = {e^{{x^2}}} \\\

Then, F(x)=0x2exdxF\left( x \right) = \int_0^{{x^2}} {{e^x}} dx
F(x)=ex21\Rightarrow F\left( x \right) = {e^{{x^2}}} - 1
Then putting x=2x = 2

F(2)=e221 F(2)=e41  \Rightarrow F\left( 2 \right) = {e^2}^{^2} - 1 \\\ \Rightarrow F\left( 2 \right) = {e^4} - 1 \\\

\therefore $$$$F\left( 2 \right) = {e^4} - 1
Thus, the correct option is B. e41{e^4} - 1.

So, the correct answer is “Option B”.

Note: To solve these kinds of problems, always remember the formula ddx(l.lu.lf(x)dx)=f(u.l)ddx(u.l)f(l.l)ddx(l.l)\dfrac{d}{{dx}}\left( {\int_{l.l}^{u.l} {f\left( x \right)dx} } \right) = f\left( {u.l} \right)\dfrac{d}{{dx}}\left( {u.l} \right) - f\left( {l.l} \right)\dfrac{d}{{dx}}\left( {l.l} \right) and log1=0\log 1 = 0. Here f(x)f'\left( x \right) represents that it is the first derivative of f(x)f\left( x \right) i.e., ddx(f(x))\dfrac{d}{{dx}}\left( {f\left( x \right)} \right).