Solveeit Logo

Question

Mathematics Question on Differential equations

Let f:(,)0Rf : (-\infty, \infty) - \\{0\\} \to \mathbb{R} be a differentiable function such that f(1)=limaa2f(1a)f'(1) = \lim_{a \to \infty} a^2 f\left(\frac{1}{a}\right). Then limaa(a+1)2tan1(1a)+a22logea\lim_{a \to \infty} \frac{a(a + 1)}{2} \tan^{-1}\left(\frac{1}{a}\right) + a^2 - 2 \log_e a is equal to:

A

32+π4\frac{3}{2} + \frac{\pi}{4}

B

38+π4\frac{3}{8} + \frac{\pi}{4}

C

52+π8\frac{5}{2} + \frac{\pi}{8}

D

34+π8\frac{3}{4} + \frac{\pi}{8}

Answer

52+π8\frac{5}{2} + \frac{\pi}{8}

Explanation

Solution

We are given the limit expression:

limaa(a+1)2tan1(1a)+a22lna.\lim_{a \to \infty} \frac{a(a + 1)}{2} \tan^{-1} \left( \frac{1}{a} \right) + a^2 - 2 \ln a.

Step 1: Simplify the tan1\tan^{-1} term Using the expansion:

tan1(1a)1a13a3as a.\tan^{-1} \left( \frac{1}{a} \right) \approx \frac{1}{a} - \frac{1}{3a^3} \quad \text{as } a \to \infty.

Substitute this approximation:

a(a+1)2tan1(1a)a(a+1)2(1a13a3).\frac{a(a + 1)}{2} \tan^{-1} \left( \frac{1}{a} \right) \approx \frac{a(a + 1)}{2} \left( \frac{1}{a} - \frac{1}{3a^3} \right).

As aa \to \infty, the dominant term is:

(a+1)2(a+1)6a2.\frac{(a + 1)}{2} - \frac{(a + 1)}{6a^2}.

As aa \to \infty, the dominant term is:

(a+1)2a2.\frac{(a + 1)}{2} \to \frac{a}{2}.

Step 2: Rewrite the full limit expression The given expression becomes:

lima(a2+a22lna).\lim_{a \to \infty} \left( \frac{a}{2} + a^2 - 2 \ln a \right).

Step 3: Identify f(x)f(x) From the problem:

f(x)=12((1+x)tan1(x)+12x2ln(x)).f(x) = \frac{1}{2} \left( (1 + x) \tan^{-1}(x) + 1 - 2x^2 \ln(x) \right).

Compute f(x)f'(x):

f(x)=12(1+x1+x2+tan1(x)+4xln(x)+2x).f'(x) = \frac{1}{2} \left( \frac{1 + x}{1 + x^2} + \tan^{-1}(x) + 4x \ln(x) + 2x \right).

Substitute x=1x = 1:

f(1)=12(1+11+1+π4+4(1)ln(1)+2(1)).f'(1) = \frac{1}{2} \left( \frac{1 + 1}{1 + 1} + \frac{\pi}{4} + 4(1) \ln(1) + 2(1) \right).

Simplify:

f(1)=12(1+π4+2).f'(1) = \frac{1}{2} \left( 1 + \frac{\pi}{4} + 2 \right).

Thus:

f(1)=52+π8.f'(1) = \frac{5}{2} + \frac{\pi}{8}.