Question
Mathematics Question on Differential equations
Let f:(−∞,∞)−0→R be a differentiable function such that f′(1)=lima→∞a2f(a1). Then lima→∞2a(a+1)tan−1(a1)+a2−2logea is equal to:
23+4π
83+4π
25+8π
43+8π
25+8π
Solution
We are given the limit expression:
lima→∞2a(a+1)tan−1(a1)+a2−2lna.
Step 1: Simplify the tan−1 term Using the expansion:
tan−1(a1)≈a1−3a31as a→∞.
Substitute this approximation:
2a(a+1)tan−1(a1)≈2a(a+1)(a1−3a31).
As a→∞, the dominant term is:
2(a+1)−6a2(a+1).
As a→∞, the dominant term is:
2(a+1)→2a.
Step 2: Rewrite the full limit expression The given expression becomes:
lima→∞(2a+a2−2lna).
Step 3: Identify f(x) From the problem:
f(x)=21((1+x)tan−1(x)+1−2x2ln(x)).
Compute f′(x):
f′(x)=21(1+x21+x+tan−1(x)+4xln(x)+2x).
Substitute x=1:
f′(1)=21(1+11+1+4π+4(1)ln(1)+2(1)).
Simplify:
f′(1)=21(1+4π+2).
Thus:
f′(1)=25+8π.