Solveeit Logo

Question

Mathematics Question on Functions

Let f,g : R → R be functions defined by*
f(x)={[x],x<0 1x,x0f(x) = \begin{cases} [x], & x < 0 \\\ |1 - x|, & x \geq 0 \end{cases}
and g(x)={exx,x<0 (x1)21,x0g(x) = \begin{cases} e^x - x, & x < 0 \\\ {(x - 1)^2 - 1}, & x \geq 0 \end{cases}
Where [x] denotes the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly:

A

one point

B

two points

C

three points

D

four points

Answer

two points

Explanation

Solution

The correct answer is (B) : two points
f(x)={[x],x<0 1x,x0f(x) = \begin{cases} [x], & x < 0 \\\ |1 - x|, & x \geq 0 \end{cases} and g(x)={exx,x<0 (x1)21,x0g(x) = \begin{cases} e^x - x, & x < 0 \\\ {(x - 1)^2 - 1}, & x \geq 0 \end{cases}
(fog)(x)={[g(x)],g(x)<0 1g(x),g(x)0(fog)(x) = \begin{cases} [g(x)], & g(x) < 0 \\\ 1 - g(x), & g(x) \geq 0 \end{cases}

Fig. Graph

h(x)={1+xex,x<0 1,x=0 (x1)21,0<x<2 2(x1)2,x2h(x) = \begin{cases} |1 + x - e^x|, & x < 0 \\\ 1, & x = 0 \\\ (x - 1)^2 - 1, & 0 < x < 2 \\\ |2 - (x - 1)^2|, & x \geq 2 \end{cases}
So, x = 0, 2 are the two points where fog is discontinuous.