Solveeit Logo

Question

Question: Let f, g, h be real functions given by \[f\left( x \right) = \sin x\], \[g\left( x \right) = 2x\] an...

Let f, g, h be real functions given by f(x)=sinxf\left( x \right) = \sin x, g(x)=2xg\left( x \right) = 2x and h(x)=cosxh\left( x \right) = \cos x.Prove that fog=go(fh)fog = go\left( {fh} \right).

Explanation

Solution

According to the question, calculate the domain using the function f(x),g(x)f\left( x \right),g\left( x \right) and h(x)h\left( x \right) . So, that all the domains are real and hence using them we can calculate fogfog and go(fh)go\left( {fh} \right) and verify that they are equal or not.

Formula used:
Here, we use the formula Sin2x=2sinxcosx{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x .

Complete step-by-step answer:
It is given that f(x)=sinxf\left( x \right) = \sin x, g(x)=2xg\left( x \right) = 2x and h(x)=cosxh\left( x \right) = \cos x.
As we know,
f:   R[1,  1]  \;R{\rm{ }} \to {\rm{ }}\left[ { - 1,\;1} \right]\; and g: RRR{\rm{ }} \to {\rm{ }}R
As it is clear that, the range of g is a subset of the domain of f.
So, fog: RRR{\rm{ }} \to {\rm{ }}R
Now, (fh)(x)=f(x)h(x)  \left( {fh} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( x \right){\rm{ }}h\left( x \right)\;
Put the values of f(x)f\left( x \right) and h(x)h\left( x \right) in the above equation.
So, we get =(cosx)(sinx) = \left( {\cos x} \right)\left( {\sin x} \right)
Multiply and divide with 2.
=22(cosx)(sinx)= \dfrac{2}{2}\left( {\cos x} \right)\left( {\sin x} \right)
Here, we use the identity Sin2x=2sinxcosx{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x.
So, we get =12sin2x = \dfrac{1}{2}\sin 2x.
So, the domain of fh is R.
Since range of sinx\sin x is [1,1],1    sin  2x    1\left[ { - 1,{\rm{ }}1} \right],{\rm{ }} - 1\; \le \;sin\;2x\; \le \;1
On further simplifying we get,
12sinx212\Rightarrow - \dfrac{1}{2} \le sin\dfrac{x}{2}{\rm{ }} \le \dfrac{1}{2}
Hence, the Range of fh = [12,12]\left[ { - \dfrac{1}{2},{\rm{ }}\dfrac{1}{2}} \right]
Therefore, (fh): R  [12,12]R\; \to \left[ { - \dfrac{1}{2},{\rm{ }}\dfrac{1}{2}} \right]
As it is clear from above, the range of fh is a subset of g.
So, go(fh):  R    R \Rightarrow go\left( {fh} \right):\;R\; \to \;R
Hence, Domains of fog and go(fh) are the same.
So, here we calculate (fog)(x)=f(g(x))  \left( {fog} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( {g\left( x \right)} \right)\;
By Putting the value g(x) in above we get,
f(2x)\Rightarrow f\left( {2x} \right)
As, f(x)=sinxf\left( x \right) = \sin x
Therefore, (fog)(x)=f(g(x))  \left( {fog} \right)\left( x \right){\rm{ }} = {\rm{ }}f\left( {g\left( x \right)} \right)\; sin(2x) \Rightarrow \sin \left( {2x} \right)
And we also calculate (go(fh))(x)  =  g((fh)(x))  \left( {go\left( {fh} \right)} \right)\left( x \right)\; = \;g\left( {\left( {fh} \right)\left( x \right)} \right)\;
By Putting the value fh(x)=sinxcosxfh\left( x \right) = \sin x\cos xin above we get,
g(sinxcosx)\Rightarrow g\left( {\sin x\cos x} \right)
As, g(x)=2xg\left( x \right) = 2x
So, we get 2sinxcosx \Rightarrow 2\sin x\cos x
By using the identity Sin2x=2sinxcosx{\mathop{\rm Sin}\nolimits} 2x = 2\sin x\cos x
Therefore, \left( {go\left( {fh} \right)} \right)\left( x \right)\; = \;g\left( {\left( {fh} \right)\left( x \right)} \right)\;$$$$ \Rightarrow \sin \left( {2x} \right)
Hence, it is clear fog  =  go(fh)fog\; = \;go\left( {fh} \right) .

Note: To solve these types of questions, we use f of g which means putting function g in function f(x). These types of problems can use chaining which means using multiple functions in functions a clear example of that is f(g((x))). We can also use the identities to solve the functions.