Solveeit Logo

Question

Mathematics Question on Maxima and Minima

Let f,gf, g and hh be the real valued functions defined on RR as f(x)={xx,x0\1,x=0,g(x)={sin(x+1)(x+1),x1\1,x=1f(x)=\begin{cases} \frac{x}{|x|}, & x \neq 0 \\\1, & x=0\end{cases}, g(x)=\begin{cases} \frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\\1, & x=-1\end{cases} and h(x)=2[x]f(x)h(x)=2[x]-f(x), where [x][x] is the greatest integer x\leq x Then the value of limx1g(h(x1))\displaystyle\lim _{x \rightarrow 1} g(h(x-1)) is

A

1

B

0

C

sin(1)\sin (1)

D

1-1

Answer

1

Explanation

Solution

The correct answer is (A) : 1
LHL=k→0lim​g(h(−k)),k>0
=k→0lim​g(−2+1)
∵f(x)=−1∀x<0
=g(−1)=1
RHL=k→0lim​g(h(k)),k>0
=k→0lim​g(−1),
∵f(x)=1,∀x>0
=1