Solveeit Logo

Question

Question: Let f, g and h be real valued functions defined on the interval [0,1] by \(f\left( x \right) = {e^{{...

Let f, g and h be real valued functions defined on the interval [0,1] by f(x)=ex2+ex2,g(x)=xex2+ex2f\left( x \right) = {e^{{x^2}}} + {e^{ - {x^2}}},g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}} and h(x)=x2ex2+ex2h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}} If a, b and c denote, respectively the absolute maximum value of f, g and h on [0,1] respectively, then
A. a = b and bc{\text{b}} \ne {\text{c}}
B. a = c and ab{\text{a}} \ne {\text{b}}
C. ab{\text{a}} \ne {\text{b}} and cb{\text{c}} \ne {\text{b}}
D. a = b = c.

Explanation

Solution

To solve this question, we will use the concept of maxima and minima of application of derivatives. If y=f(x)y = f\left( x \right) be a function defined on [a,b], then we will use the following algorithm for finding the maximum and minimum values on closed interval [a,b]:
Step I: find f(x)f'\left( x \right)
Step II: find f(x)=0f'\left( x \right) = 0 and find values of x. let c1,c2,c3,........,cn{c_1},{c_2},{c_3},........,{c_n} be the values of x.
Step III: take the maximum and minimum values obtained in step III are respectively the largest (or absolute maximum) and the smallest (or absolute minimum) values of the function.

Complete step-by-step answer :
Given that,

f(x)=ex2+ex2 g(x)=xex2+ex2 h(x)=x2ex2+ex2  \Rightarrow f\left( x \right) = {e^{{x^2}}} + {e^{ - {x^2}}} \\\ \Rightarrow g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}} \\\ \Rightarrow h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}} \\\

Where x[0,1]x \in \left[ {0,1} \right]
Let us find the absolute maximum values of f, g and h in [0,1].
1. f(x)=ex2+ex2f\left( x \right) = {e^{{x^2}}} + {e^{ - {x^2}}}
Differentiate both sides with respect to x,
f(x)=ex2(2x)+ex2(2x)\Rightarrow f'\left( x \right) = {e^{{x^2}}}\left( {2x} \right) + {e^{ - {x^2}}}\left( { - 2x} \right)
f(x)=(2x)(ex2ex2)\Rightarrow f'\left( x \right) = \left( {2x} \right)\left( {{e^{{x^2}}} - {e^{ - {x^2}}}} \right)
Here we can see that,
f(x)0,f'\left( x \right) \geqslant 0, for 0x10 \leqslant x \leqslant 1, it means it is an increasing function.
Thus, we will get the maximum value of f(x)f\left( x \right) at f(1)f\left( 1 \right).
So,
f(1)=e+1e\Rightarrow f\left( 1 \right) = e + \dfrac{1}{e}
And according to the question, it is denoted as a, i.e.
e+1e=ae + \dfrac{1}{e} = a
Similarly,
g(x)=xex2+ex2\Rightarrow g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}}
Differentiate both sides with respect to x,

g(x)=x(ex2×2x)+ex2+ex2(2x) g(x)=ex2+2x(xex2ex2)  \Rightarrow g'\left( x \right) = x\left( {{e^{{x^2}}} \times 2x} \right) + {e^{{x^2}}} + {e^{ - {x^2}}}\left( { - 2x} \right) \\\ \Rightarrow g'\left( x \right) = {e^{{x^2}}} + 2x\left( {x{e^{{x^2}}} - {e^{ - {x^2}}}} \right) \\\

Here,
g(x)0,g'\left( x \right) \geqslant 0, for0x10 \leqslant x \leqslant 1, hence it is an increasing function.
We will get the maximum value of g(x)g\left( x \right) at g(1)g\left( 1 \right)
So,
g(1)=e+1e\Rightarrow g\left( 1 \right) = e + \dfrac{1}{e}
and it will be denoted as b, i.e. e+1e=be + \dfrac{1}{e} = b
Now,
h(x)=x2ex2+ex2h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}}
Differentiate both sides with respect to x,

h(x)=x2(ex2×2x)+2xex2+ex2(2x) h(x)=2x(x2ex2+ex2ex2)  \Rightarrow h'\left( x \right) = {x^2}\left( {{e^{{x^2}}} \times 2x} \right) + 2x{e^{{x^2}}} + {e^{ - {x^2}}}\left( { - 2x} \right) \\\ \Rightarrow h'\left( x \right) = 2x\left( {{x^2}{e^{{x^2}}} + {e^{{x^2}}} - {e^{ - {x^2}}}} \right) \\\

Here, we can see that
h(x)0,h'\left( x \right) \geqslant 0, for0x10 \leqslant x \leqslant 1, it means it is also an increasing function.
We will get the maximum value of h(x)h\left( x \right) at h(1)h\left( 1 \right)
So,
h(1)=e+1e\Rightarrow h\left( 1 \right) = e + \dfrac{1}{e}
And it will be denoted as c.
So, now we can clearly see that f(1)=g(1)=h(1)f\left( 1 \right) = g\left( 1 \right) = h\left( 1 \right)
i.e. a = b = c.
Therefore, the correct answer is option (D).

Note : Whenever we are asked such types of questions, we have to remember that if f(x)f\left( x \right) be a real valued function defined on an interval [a, b]. Then, f(x)f\left( x \right) is said to have the maximum value in [a, b], if there exists a point c in [a, b] such that f(x)f(c)f\left( x \right) \leqslant f\left( c \right) for all x[a,b]x \in \left[ {a,b} \right], in such a case f(c)f\left( c \right) is called the absolute maximum value.